Review of Detection and Attribution of multi-type forest disturbances using an ensemble of spatio-temporal-spectral information from remote sensing images
- Pages: 1-19(2023)
DOI: 10.11834/jrs.20232211
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
吴伶,刘湘南,刘美玲,张廷伟,杨宝文,徐宇岐.XXXX.融合遥感时间序列时空谱信息的森林扰动检测与归因研究进展.遥感学报,XX(XX): 1-19
WU Ling,LIU Xiangnan,LIU Meiling,ZHANG Tingwei,YANG Baowen,XU Yuqi. XXXX. Review of Detection and Attribution of multi-type forest disturbances using an ensemble of spatio-temporal-spectral information from remote sensing images. National Remote Sensing Bulletin, XX(XX):1-19
遥感时间序列蕴含自然因素和人类活动等不同驱动因子导致的森林组成、结构、功能变化及其差异信息,这为融合遥感时间序列中蕴含的时间维、空间维和光谱维(时空谱)信息开展森林扰动检测与归因提供了理论支撑,其能有效提升对森林演替过程、发展态势及其驱动和响应机制的理解能力。本文系统评述了融合遥感时间序列时空谱信息的森林扰动检测与归因研究进展。首先,从数据、特征、算法等多个角度阐述当前森林扰动检测进展:数据角度,介绍了面向稠密和稀疏时间序列等不同观测频次的变化检测方法;特征角度,归纳了森林扰动光谱响应特征和多光谱特征集成变化检测策略,总结了面向森林扰动检测的时序与空间特征融合方式;算法角度,介绍了并行和串行两种多算法集成策略,描述了面向森林低强度扰动的变化检测算法研究进展。森林扰动归因的本质是面向森林多类型扰动分类问题,本文在分别按照时间顺序和特征维度归纳作为森林扰动归因输入的归因特征的基础上,总结了基于遥感时间序列时空谱和地形特征融合的森林多类型扰动归因方法。最后,本文分析了森林扰动遥感监测目前存在的问题,并对未来研究方向进行了展望,以期为融合遥感时间序列时空谱信息的变化检测和归因研究提供借鉴。
Remote sensing time series contain the changes and their difference information of forest composition, structure, function driven by natural factors and human activities. This provides theoretical support for forest disturbance detection and attribution by integrating spatio-temporal-spectral information from remote sensing time series data, which can effectively improve the understanding of forest succession processes, developmental trend and their driving and response mechanism. This paper systematically reviewed the research progress of forest disturbance detection and attribution by integrating spatio-temporal-spectral information from remote sensing time series.The prerequisite for forest disturbance attribution is the detection of forest disturbance events, and the accuracy of disturbance detection directly affects the accuracy of subsequent attribution. In this paper, current forest disturbance detection methods and techniques are highlighted from multiple perspectives, including data (time series observation frequency selection), features (spectral feature selection, fusion of spatial and temporal feature), and algorithms (multi-algorithm integration, forest low-intensity disturbance detection). From the data perspective, based on the frequency of available observations in different regions, the change detection methods for dense and sparse time series are introduced respectively. From the feature perspective, the spectral response characteristics of forest disturbances are summarized. The change detection strategy of multi-spectral feature integration is introduced to address the problems of change detection based on single spectral features. The fusion of temporal and spatial features for forest disturbance detection is summarized. From the algorithmic perspective, to address the issues such as differences in the results of different change detection algorithms and the fact that a single algorithm may not be the most efficient way to describe all conditions, two multi-algorithm integration strategies, parallel and serial, are presented. Based on the analysis of the reasons for the poor detection of low-intensity disturbances (e.g., selective logging, pests and diseases, drought, etc.), progress in research on change detection oriented to mid- and low-intensity disturbances in forests is described.The essence of forest disturbance attribution is a classification problem for multiple types of forest disturbances, which identifies disturbance types with the help of remote sensing features of forest disturbances caused by different driving factors as the input of classification algorithms. In this paper, we first summarized the attribution features as the input of forest disturbance attribution, that is, pre-, mid- and post-disturbance features in chronological order, and temporal, spatial, spectral and topographic features in feature dimensions. Then, according to the condition that whether disturbance detection before attribution of disturbances, methods for attributing multiple types of forest disturbance based on the spatio-temporal-spectral and topographic features of remote sensing time series are summarized and compared: the direct method and the two-stage method.At last, we analyzed the current problems in forest disturbance monitoring using remote sensing, and prospected the future research directions such as fusion of spatio-temporal-spectral features, simultaneous detection of forest multi-intensity disturbance and attribution of forest multi-type disturbance under limited sample conditions. We hope this article provides reference for detection and attribution of changes using an ensemble of spatio-temporal-spectral information from remote sensing time series.
森林扰动遥感时间序列时空谱信息特征融合扰动检测扰动归因
forest disturbanceremote sensing time seriesspatio-temporal-spectral informationfeature ensembledisturbances detectionattribution of disturbances
Ahern F J.1988.The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. Remote Sensing, 9: 1451–1468 [DOI: 10.1080/01431168808954952http://dx.doi.org/10.1080/01431168808954952]
Ahmed O S, Wulder M A, White J C, Hermosilla T, Coops N C and Franklin S E.2017.Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario. Remote Sensing Letters, 8(1): 29-37 [DOI:10.1080/2150704X.2016.1233371http://dx.doi.org/10.1080/2150704X.2016.1233371]
Bruzzone L, Cossu R and Vernazza G. 2004. Detection of land-cover transitions by combining multidate classifiers. Pattern Recognit. Lett, 25:1491–1500.[DOI:10.1016/j.patrec.2004.06.002http://dx.doi.org/10.1016/j.patrec.2004.06.002]
Awty Carroll K, Bunting P, Hardy A and Bell G.2019.An evaluation and comparison of four dense time series change detection methods using simulated data. Remote Sensing, 11(23): 2779[DOI: 10.3390/rs11232779http://dx.doi.org/10.3390/rs11232779]
Bao Y, Wang F, Tong S, Na L, Han A, Zhang J, Bao Y, Han Y and Zhang Q.2019.Effect of drought on outbreaks of major forest pests, pine caterpillars in Shandong Province, China. Forests, 10(3): 264 [DOI: 10.3390/f10030264http://dx.doi.org/10.3390/f10030264]
Betts M G, Wolf C, Ripple W J, Phalan B, Millers K A, Duarte A, Butchart S H M and Levi T.2017.Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547 (7664): 441–444 [DOI: 10.1038/nature23285http://dx.doi.org/10.1038/nature23285]
Bontemps S, Langner A and Defourny P.2012.Monitoring forest changes in Borneo on a yearly basis by an object-based change detection algorithm using SPOT-VEGETATION time series. International Journal of Remote Sensing, 33(15): 4673-4699 [DOI: 10.1080/01431161.2011.638336http://dx.doi.org/10.1080/01431161.2011.638336]
Brooks E B, Yang Z Q, Thomas V A and Wynne R H.2017.Edyn:Dynamic signaling of changes to forests using exponentially weighted moving average charts. Forests, 8(9): 1–18 [DOI: 10.3390/f8090304http://dx.doi.org/10.3390/f8090304]
Brooks E B, Wynne R H, Thomas V A, Blinn C E and Coulston J W.2014.On-the-fly massively multitemporal change detection using statistical quality control charts and landsat data. IEEE Transactions on Geoscience and Remote Sensing, 52(6): 3316–3332 [DOI: 10.1109/TGRS.2013.2272545http://dx.doi.org/10.1109/TGRS.2013.2272545]
Brooks E B, Thomas V A, Wynne R H, and Coulston J W.2012.Fitting the multitemporal curve: A Fourier series approach to the missing data problem in remote sensing analysis. IEEE Transactions on Geoscience and Remote Sensing, 50(9): 3340–3353 [DOI: 10.1109/TGRS.2012.2183137http://dx.doi.org/10.1109/TGRS.2012.2183137]
Bueno I T, Mcdermid G J and Silveira E M O.2020.Spatial Agreement among Vegetation Disturbance Maps in Tropical Domains Using Landsat Time Series. Remote Sensing, 12(18):2948 [DOI: 10.3390/rs12182948http://dx.doi.org/10.3390/rs12182948]
Bueno I T, Acerbi F W, Silveira E M O, Mello J M and Scolforo J R S.2019.Object-based change detection in the cerrado biome using landsat time series. Remote Sensing, 11(5) [DOI: 10.3390/rs11050570]
Bullock E L, Woodcock C E and Holden C E.2020a.Improved change monitoring using an ensemble of time series algorithms. Remote Sensing of Environment, 238: 111165 [DOI: 10.1016/j.rse.2019.04.018http://dx.doi.org/10.1016/j.rse.2019.04.018]
Bullock E L, Woodcock C E and Olofsson P.2020b.Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment,238: 110968 [DOI: 10.1016/j.rse.2018.11.011http://dx.doi.org/10.1016/j.rse.2018.11.011]
Cardille J A, Perez E, Crowley M A, Wulder M A, White J C and Hermosilla T.2022.Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sensing of Environment, 268: 112741 [DOI: 10.1016/j.rse.2021.112741http://dx.doi.org/10.1016/j.rse.2021.112741]
Chavana-Bryant C, Malhi Y, Wu J, Asner G P, Anastasiou A, Enquist B J, Cosio Caravasi E G, Doughty C E, Saleska S R, Martin R E, and Gerard F F.2017.Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytol, 214(3): 1049–1063 [DOI: 10.1111/nph.13853http://dx.doi.org/10.1111/nph.13853]
Chen J, Chen X H, Cui X H and Chen J. 2011. Change vector analysis in posterior probability space: A new method for land cover change detection. IEEE Geosci. Remote Sens. Lett, 8:317–321. [DOI:10.1109/LGRS.2010.2068537http://dx.doi.org/10.1109/LGRS.2010.2068537]
Chen X, Zhao W, Chen J, Qu Y, Wu D and Chen X.2021.Mapping large-scale forest disturbance types with multi-temporal cnn framework. Remote Sensing, 13(24): 5177 [DOI: 10.3390/rs13245177http://dx.doi.org/10.3390/rs13245177]
Cohen W B, Healey S P, Yang Z, Zhu Z and Gorelick N.2020.Diversity of algorithm and spectral band inputs improves landsat monitoring of forest disturbance. Remote Sensing, 12(10): 1673 [DOI: 10.3390/rs12101673http://dx.doi.org/10.3390/rs12101673]
Cohen W B, Yang Z, Healey S P, Kennedy R E, Gorelick N.2018.A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sensing of Environment, 205: 131–140[DOI: 10.1016/j.rse.2017.11.015http://dx.doi.org/10.1016/j.rse.2017.11.015]
Cohen W B, Healey S P, Yang Z, Stehman S V, Brewer C K, Brooks E B, Gorelick N, Huang C, Hughes M J, Kennedy R E, Loveland T R, Moisen G G, Schroeder T A, Vogelmann J E, Woodcock C E, Yang L and Zhu Z.2017.How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests, 8(4):98 [DOI: 10.3390/f8040098http://dx.doi.org/10.3390/f8040098]
Cohen W B, Yang Z and Kennedy R.2010.Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2.TimeSync - Tools for calibration and validation.Remote Sensing of Environment, 114(12): 2911–2924 [DOI: 10.1016/j.rse.2010.07.010http://dx.doi.org/10.1016/j.rse.2010.07.010]
Cohen W B and Goward S N.2004.Landsat’s role in ecological applications of remote sensing. Bioscience, 54(6): 535–545 [DOI:10.1641/00063568(2004)054http://dx.doi.org/10.1641/00063568(2004)054[0535:LRIEAO]2.0.CO]
Desclée B, Bogaert P and Defourny P. 2006. Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1): 1-11[DOI:10.1016/j.rse.2006.01.013http://dx.doi.org/10.1016/j.rse.2006.01.013]
DeVries B, Verbesselt J, Kooistra L and Herold M.2015.Robust monitoring of small-scale forest disturbances in a tropical montane forest using landsat time series. Remote Sensing of Environment.161:107121[DOI:10.1016/j.rse.2015.02.012http://dx.doi.org/10.1016/j.rse.2015.02.012]
Esteban J, Fernández-Landa A, ToméJ L, Gómez C and Marchamalo M.2021.Identification of Silvicultural Practices in Mediterranean Forests Integrating Landsat Time Series and a Single Coverage of ALS Data. Remote Sensing, 13: 3611 [DOI: 10.3390/rs13183611http://dx.doi.org/10.3390/rs13183611]
Feng L Y, Tan B X, Wang X H, Chen X Y, Zeng W S and Qi Z.2020. Object-oriented rapid forest change detection based on distribution function. Remote Sensing for Land & Resources, 32(2):73-80
冯林艳,谭炳香,王晓慧,陈新云,曾伟生,戚 曌. 2020. 基于分布函数的对象级森林变化快速检测. 国土资源遥感, 32(2):73-80[DOI:10.6046/gtzyyg.2020.02.10http://dx.doi.org/10.6046/gtzyyg.2020.02.10]
Feng Y, Ziegler A D, Elsen P R, Liu Y, He X, Spracklen D V, Holden J, Jiang X, Zheng C and Zeng Z.2021.Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 4(10): 892–899 [DOI: 10.1038/s41893-021-00738-yhttp://dx.doi.org/10.1038/s41893-021-00738-y]
Fornacca D, Ren G P and Xiao W. 2020. Small fires, frequent clouds, rugged terrain and no training data: a methodology to reconstruct fire history in complex landscapes. International Journal of Wildland Fire, 30(2):125-138 [DOI:10.1071/WF20072http://dx.doi.org/10.1071/WF20072]
Fu S L and Fu B J.2019.Concept Clarification of Eco-geography and Analysis of Related Classical Studies.Scientia Geographica Sinica, 39(1): 70-79
傅声雷, 傅伯杰.2019.生态地理学概念界定及其经典案例分析.地理科学, 39(1): 70-79 [DOI: 10.13249/j.cnki.sgs.2019.01.008http://dx.doi.org/10.13249/j.cnki.sgs.2019.01.008]
Gao F, Hilker T, Zhu X L, Anderson M C, Masek J G, Wang P J and Yang Y.2015.Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3): 47–60 [DOI: 10.1109/MGRS.2015.2434351http://dx.doi.org/10.1109/MGRS.2015.2434351]
Ghaderpour E, Pagiatakis S D and Hassan Q K.2021.A survey on Change Detection and Time Series Analysis with Applications. Appl. Sci, 11: 6141 [DOI: 10.3390/app11136141http://dx.doi.org/10.3390/app11136141]
Ghaderpour E and Vujadinovic T.2020.Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sensing, 12(23):4001 [DOI: 10.3390/rs12234001http://dx.doi.org/10.3390/rs12234001]
Gómez C, White J C, Wulder M A and Alejandro P.2015.Integrated object-based spatiotemporal characterization of forest change from an annual time series of Landsat image composites. Canadian Journal of Remote Sensing, 41(4): 271–29[DOI: 10.1080/07038992.2015.1089162http://dx.doi.org/10.1080/07038992.2015.1089162]
Goodwin N R, Coops N C, Wulder M A, Gillanders S, Schroeder T A and Nelson T.2008.Estimation of insect infestation dynamics using a temporal sequence of Landsat data. Remote Sensing of Environment, 112(9): 3680–3689 [DOI: 10.1016/j.rse.2008.05.005http://dx.doi.org/10.1016/j.rse.2008.05.005]
Gu X Z, Chen E X, Li Z Y, Zhao L, Fan Y X and Wang Y H. 2019. Multipolarization spaceborne SAR forest cover change detection method. Scientia Silvae Sinicae,55(5):74-84
谷鑫志, 陈尔学, 李增元, 赵磊, 范亚雄, 王雅慧.2019. 多极化星载SAR森林覆盖变化检测方法.林业科学,55(5):74-84[DOI:10.11707 /j.1001-7488.20190509http://dx.doi.org/10.11707/j.1001-7488.20190509]
Hais M, Jonášová M, Langhammer J and Kučera T.2009.Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sensing of Environment, 113(4): 835–845 [DOI: 10.1016/j.rse.2008.12.012http://dx.doi.org/10.1016/j.rse.2008.12.012]
Hamunyela E, Brandt P, Shirima D, Do H T T, Herold M and Roman-Cuesta R M.2020.Space-time detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. International Journal of Applied Earth Observation and Geoinformation, 88: 102063 [DOI: 10.1016/j.jag.2020.102063http://dx.doi.org/10.1016/j.jag.2020.102063]
Hamunyela E, Verbesselt J and Herold M.2016.Using spatial context to improve early detection of deforestation from Landsat time series. Remote Sensing of Environment, 172: 126–138 [DOI: 10.1016/j.rse.2015.11.006http://dx.doi.org/10.1016/j.rse.2015.11.006]
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A, Thau D, Stehman S V, Goetz S J, Loveland T R, Kommareddy A, Egorov A, Chini L, Justice C O and Townshend J R G.2013.High-resolution global maps of 21st-century forest cover change. Science, 342:850–854 [DOI: 10.1126/science.1244693http://dx.doi.org/10.1126/science.1244693]
Hartmann H, Schuldt B, Sanders T G M, Macinnis-Ng C, Boehmer H J, Allen C D, Bolte A, Crowther T W, Hansen M C, Medlyn B E, Ruehr N K and Anderegg W R L.2018a.Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health’.New Phytol, 217: 984–987 [DOI: 10.1111/nph.14988http://dx.doi.org/10.1111/nph.14988]
Hartmann H, Moura C F, Anderegg W R, Ruehr N K, Salmon Y, Allen C D, Arndt S K, Breshears D D, Davi H, Galbraith D and Ruthrof K X.2018b.Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol, 218:15–28 [DOI: 10.1111/nph.15048http://dx.doi.org/10.1111/nph.15048]
Healey S P, Cohen W B, Yang Z, Kenneth Brewer C, Brooks E B, Gorelick N, Hernandez A J, Huang C, Hughes M J, Kennedy R E, Loveland T R, Moisen G G, Schroeder T A, Stehman S V, Vogelmann J E, Woodcock C E, Yang L and Zhu Z.2018.Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment,204:717–728[DOI: 10.1016/j.rse.2017.09.029http://dx.doi.org/10.1016/j.rse.2017.09.029]
Healey S P, Cohen W B, Zhiqiang Y and Krankina O N.2005.Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sensing of Environment, 97(3): 301–310 [DOI: 10.1016/j.rse.2005.05.009http://dx.doi.org/10.1016/j.rse.2005.05.009]
Hemati M, Hasanlou M, Mahdianpari M and Mohammadimanesh F.2021.A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth[J]. Remote Sensing, 13: 2869 [DOI: 10.3390/rs13152869http://dx.doi.org/10.3390/rs13152869]
Hermosilla T, Wulder M, White J C, Coops N C and Hobart G W.2015.Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment, 170:121–132 [DOI: 10.1016/j.rse.2015.09.004http://dx.doi.org/10.1016/j.rse.2015.09.004]
Hilker T, Wulder M A, Coops N C, Linke J, McDermid G, Masek J G, Gao F and White J C.2009.A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS.Remote Sens.Environ., 113(8):1613–1627 [DOI: 10.1016/j.rse.2009.03.007http://dx.doi.org/10.1016/j.rse.2009.03.007]
Hislop S, Haywood A, Alaibakhsh M, Nguyen T H., Soto-Berelov M, Jones S and Stone C.2021.A reference data framework for the application of satellite time series to monitor forest disturbance, International Journal of Applied Earth Observation and Geoinformation, 105: 102636 [DOI: 10.1016/j.jag.2021.102636http://dx.doi.org/10.1016/j.jag.2021.102636]
Hislop S, Jones S, Soto-Berelov M, Skidmore A, Haywood A and Nguyen T H.2019.A fusion approach to forest disturbance mapping using time series ensemble techniques. Remote Sensing of Environment, 221: 188–197 [DOI: 10.1016/j.rse.2018.11.025http://dx.doi.org/10.1016/j.rse.2018.11.025]
Hu S Y, Pang Y, Meng S L and Yue C R.2020.Annual Forest Disturbance Detection Using Time Series Landsat 8 OLI Data. Forest Research, 33(6): 65-72
胡圣元, 庞勇, 蒙诗栎, 岳彩荣.2020.时间序列Landsat 8 OLI数据森林年扰动检测.林业科学研究, 33(6): 65-72 [DOI: 10.13275/j.cnki.lykxyj.2020.06.008http://dx.doi.org/10.13275/j.cnki.lykxyj.2020.06.008]
Huang C B, Dian Y Y, Zhou Z X, Wang D and Chen R D.2015.Forest change detection based on time series images with statistical properties. National Remote Sensing Bulletin, 19(4): 657-668
黄春波, 佃袁勇, 周志翔, 王娣, 陈瑞冬.2015.基于时间序列统计特性的森林变化监测.遥感学报, 19(4): 657-668 [DOI: 10.11834/jrs.20154104http://dx.doi.org/10.11834/jrs.20154104]
Huang L.2021.A review on the climatic regulation effects of afforestation and its impact mechanisms. Acta Ecologica Sinica, 41(2): 469–478
黄麟.2021.造林气候调节效应及其影响机理研究进展.生态学报, 41(2): 469–478 [DOI: 10.5846/stxb202003290731http://dx.doi.org/10.5846/stxb202003290731]
Huang C Y, Anderegg W R and Asner G P.2019.Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 231:111233[DOI: 10.1016/j.rse.2019.111233http://dx.doi.org/10.1016/j.rse.2019.111233]
Huang C Y and Anderegg W R.2012.Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Glob. Chang. Biol, 18: 1016–1027 [DOI: 10.1111/j.1365-2486.2011.02592.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02592.x]
Huang C, Goward S N, Masek J G, Thomas N, Zhu Z and Vogelmann J E.2010.An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114: 183–198 [DOI: 10.1016/j.rse.2009.08.017http://dx.doi.org/10.1016/j.rse.2009.08.017]
Huo L Z, Boschetti L and Sparks A M.2019.Object-based classification of forest disturbance types in the conterminous United States. Remote Sensing, 11(5): 477 [DOI:10.3390/rs11050477http://dx.doi.org/10.3390/rs11050477]
Jentsch P C, Bauch C T and Anand M.2021.Fire mitigates bark beetle outbreaks in serotinous forests. Theoretical Ecology, 14(4): 611–621 [DOI: 10.1007/s12080-021-00520-yhttp://dx.doi.org/10.1007/s12080-021-00520-y]
Kennedy R E, Yang Z, Braaten J, Copass C, Antonova N, Jordan C and Nelson P.2015.Attribution of disturbance change agents from Landsat time-series in support of habitat monitoring in the Puget Sound region, USA. Remote Sensing of Environment, 166: 271–285 [DOI: 10.1016/j.rse.2015.05.005http://dx.doi.org/10.1016/j.rse.2015.05.005]
Kennedy R E, Yang Z and Cohen W B.2010.Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1.LandTrendr - Temporal segmentation algorithms. Remote Sensing of Environment, 114: 2897–2910 [DOI: 10.1016/j.rse.2010.07.008http://dx.doi.org/10.1016/j.rse.2010.07.008]
Kong Y L, Huang Q Q, Wang C Y, Chen J B, Chen, J S and He D X.2018.Long Short-Term Memory Neural Networks for Online Disturbance Detection in Satellite Image Time Series. Remote Sensing, 10(3):452 [DOI: 10.3390/rs10030452http://dx.doi.org/10.3390/rs10030452]
Lei M, Tian W X, Ren D and Dong T. 2019. Forest change detection method for remote sensing images based on object classification. Journal of Forest and Environment, 39(6):641-646
雷 鸣,田卫新,任 东,董 婷. 2019. 基于对象分类的遥感影像森林变化检测方法. 森林与环境学报, 39(6):641-646[DOI:10.13324 /j.cnki.jfcf.2019.06.012http://dx.doi.org/10.13324/j.cnki.jfcf.2019.06.012]
Li C G and Dai H B. 2017. Statistical Object-Based Method for Forest Change Detection Using High-Resolution Remote Sensing Images. Scientia Silvae Sinicae, 53(5):74-81
李春干, 代华兵. 2017. 基于统计检验的面向对象高分辨率遥感图像森林变化检测. 林业科学, 53(5):74-81
Li C G and Liang W H. 2017. Forest change detection using remote sensing image based on object-oriented change vector analysis. Remote Sensing For Land & Resources,29(3):77-84
李春干, 梁文海. 2017. 基于面向对象变化向量分析法的遥感影像森林变化检测. 国土资源遥感,29(3):77-84
Li L X, Shen R P, Li X H and G J.2016.Comparison of Forest Disturbance Indices based on MODIS Time-Series Data. Remote Sensing Technology and Application, 31(6): 1083–1090
李洛晞, 沈润平, 李鑫慧, 郭佳.2016.基于MODIS时间序列森林扰动监测指数比较研究.遥感技术与应用, 31(6): 1083–1090 [DOI:10.11873/j.issn.1004-0323.2016.6.1083http://dx.doi.org/10.11873/j.issn.1004-0323.2016.6.1083]
Li Y, Wu Z, Xu X, Fan H, Tong X and Liu J.2021.Forest disturbances and the attribution derived from yearly Landsat time series over 1990–2020 in the Hengduan Mountains Region of Southwest China. Forest Ecosystems, 8(1) [DOI: 10.1186/s40663-021-00352-6]
Lin Y, Zhang L, Wang N, Zhang X, Cen Y and Sun X.2020.A change detection method using spatial-temporal-spectral information from Landsat images. International Journal of Remote Sensing, 41(2): 772–793 [DOI: 10.1080/01431161.2019.1648905http://dx.doi.org/10.1080/01431161.2019.1648905]
Liu G F, Guan R M, Xia M L, Lu H L, Xu M and Zheng H.2022.Comprehensive assessment on both carbon and ecosystem-based benefits from Xishuangbanna′s tropical forests changes. Acta Ecologica Sinica, 42(3): 1118-1129
刘桂芳, 关瑞敏, 夏梦琳, 卢鹤立, 徐明, 郑辉.2022.西双版纳地区森林变化碳效应与生态效益评估.生态学报, 42(3): 1118-1129 [DOI: 10.5846/stxb202003290735http://dx.doi.org/10.5846/stxb202003290735]
Liu M, Liu X, Wu L, Tang Y, Li Y, Zhang Y, Ye L and Zhang B.2021.Establishing forest resilience indicators in the hilly red soil region of southern China from vegetation greenness and landscape metrics using dense Landsat time series. Ecological Indicators, 121: 106985 [DOI: 10.1016/j.ecolind.2020.106985http://dx.doi.org/10.1016/j.ecolind.2020.106985]
Liu W W, Wang X K, Lu F and Ouyang Z Y.2016.Influence of afforestation, reforestation, forest logging, climate change, CO2 concentration rise, fire, and insects on the carbon sequestration capacity of the forest ecosystem. Acta Ecologica Sinica, 36(8): 2113- 2122
刘魏魏, 王效科, 逯非, 欧阳志云.2016.造林再造林、森林采伐、气候变化、CO2浓度升高、火灾和虫害对森林固碳能力的影响.生态学报,36(8): 2113-2122 [DOI: 10.5846/stxb201411022143http://dx.doi.org/10.5846/stxb201411022143]
Lu D, Mausel P, Brondízio E and Moran E. 2004. Change detection techniques. International Journal of Remote Sensing,25:2365–2407 [DOI:10.1080/0143116031000139863http://dx.doi.org/10.1080/0143116031000139863]
Lu M, Pebesma E, Sanchez A and Verbesselt J. 2016. Spatio-temporal change detectionfrom multidimensional arrays: Detecting deforestation from MODIS time series. ISPRS Journal of Photogrammetry and Remote Sensing, 117: 227–236 [DOI:10.1016/j.isprsjprs.2016.03.007http://dx.doi.org/10.1016/j.isprsjprs.2016.03.007]
Lv Y Y, Ren X Y and Li M S.2014.Assessing forest disturbance patterns over the three forested areas of Nanjing using multi-temporal TM / ETM + imagery. Journal of Nanjing Forestry University ( Natural Sciences Edition), 38(1): 77-82
吕莹莹, 任芯雨, 李明诗.2014.基于TM/ETM+数据的南京三区域城市森林干扰指数及分析.南京林业大学学报(自然科学版), 38(1): 77-82 [DOI: 10.3969/j.issn.1000-2006.2014.01.014http://dx.doi.org/10.3969/j.issn.1000-2006.2014.01.014]
Marzo D Teresa, Gasparri N I, Lambin E F, Kuemmerle and Tobias. 2022. Agents of Forest Disturbance in the Argentine Dry Chaco. Remote Sensing, 14(7): 1758 [DOI:10.3390/rs14071758http://dx.doi.org/10.3390/rs14071758]
McDowell N G, Coops N C, Beck P S A, Chambers J Q, Gangodagamage C, Hicke J A, Huang C, Kennedy R, Krofcheck D J, Litvak M, Meddens A J H, Muss J, Negrón-Juarez R, Peng C, Schwantes A M, Swenson J J, Vernon L J, Williams A P, Xu C, Zhao M, Running S W, Allen C D, 2015.Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci.20, 114–123[DOI: 10.1016/j.tplants.2014.10.008http://dx.doi.org/10.1016/j.tplants.2014.10.008]
Mei S H, Fan C C and Liao Y S. 2019. Forest change detection based on spectral and texture features. Bulletin of surveying and mapping. 8: 140-143.
梅树红, 范城城, 廖永生.2019. 结合光谱和纹理特征的林地变更检测.测绘通报, 8: 140-143.DOI: 10.13474 /j.cnki.11-2246.2019.0269http://dx.doi.org/10.13474/j.cnki.11-2246.2019.0269
Meng R, Gao R, Zhao F, Huang C, Sun R, and Lv Z.2022.Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest. Remote Sensing of Environment, 269: 112847 [DOI: 10.1016/j.rse.2021.112847http://dx.doi.org/10.1016/j.rse.2021.112847]
Meng Y Y, Liu X N, Wang Z, Ding C and Zhu L H.2021.How can spatial structural metrics improve the accuracy of forest disturbance and recovery detection using dense Landsat time series? Ecological Indicators, 132 [DOI: 10.1016/j.ecolind.2021.108336http://dx.doi.org/10.1016/j.ecolind.2021.108336]
Meng Y Y, Liu X N, Wu L, Liu M L, Zhang B Y and Zhao S.2019.Spatio-temporal variation indicators for landscape structure dynamics monitoring using dense normalized difference vegetation index time series. Ecological Indicators,107:105607[DOI:10.1016/j.ecolind.2019.105607http://dx.doi.org/10.1016/j.ecolind.2019.105607]
Murillo-Sandoval P J, Hilker T, Krawchuk M A and Van Den Hoek J.2018.Detecting and attributing drivers of forest disturbance in the Colombian andes using landsat time-series. Forests, 9(5) [DOI: 10.3390/f9050269]
National Remote Sensing Center of China.2021.2021 annual report of global ecological environment remote sensing monitoring.[2021-12-20].https://nrscc.most.cn/p1/dtxwlb/20211220/441.html ( (https://nrscc.most.cn/p1/dtxwlb/20211220/441.html((
科技部国家遥感中心.2021.全球生态环境遥感监测2021年度报告.
Nguyen T H, Jones S D, Soto-Berelov M, Haywood A and Hislop S.2018.A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sensing of Environment, 217:461–475 [DOI: 10.1016/j.rse.2018.08.028http://dx.doi.org/10.1016/j.rse.2018.08.028]
Oeser J, Heurich M, Senf C, Pflugmacher D and Kuemmerle T.2021.Satellite-based habitat monitoring reveals long-term dynamics of deer habitat in response to forest disturbances. Ecological Applications, 31(3): e2269 [DOI: 10.1002/eap.2269http://dx.doi.org/10.1002/eap.2269]
Oeser J, Pflugmacher D, Senf C, Heurich M and Hostert P.2017.Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe. Forests, 8(7): 251 [DOI: 10.3390/f8070251http://dx.doi.org/10.3390/f8070251]
Otero V, Ruben V, Satyanarayana B, Mohd-Lokman H, Lucas R and Dahdouh-Guebas F.2019.An analysis of the early regeneration of mangrove forests using landsat time series in the matang mangrove forest reserve, peninsular malaysia. Remote Sensing, 11(7): 774 [DOI: 10.3390/rs11070774http://dx.doi.org/10.3390/rs11070774]
Pasquarella V J, Bradley B A and Woodcock C E.2017.Near-real-time monitoring of insect defoliation using Landsat time series. Forests, 8(8): 275 [DOI: 10.3390/f8080275http://dx.doi.org/10.3390/f8080275]
Piao S, Wang X, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A, Philippe C, Hans T, Nemani R R and Myneni R B.2020.Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth and Environment, 1(1): 14–27 [DOI: 10.1038/s43017-019-0001-xhttp://dx.doi.org/10.1038/s43017-019-0001-x]
Platt R V, Ogra M V, Badola R and Hussain S A.2016.Conservation-induced resettlement as a driver of land cover change in India: An object-based trend analysis. Applied Geography, 69: 75–86 [DOI: 10.1016/j.apgeog.2016.02.006http://dx.doi.org/10.1016/j.apgeog.2016.02.006]
Platt R V and Schoennagel T . 2009. An object-oriented approach to assessing changes in tree cover in the Colorado. Forest Ecology and Management, 258(7): 1342-1349 [DOI:10.1016/j.foreco.2009.06.039http://dx.doi.org/10.1016/j.foreco.2009.06.039]
Puhm M, Deutscher J, Hirschmugl M, Wimmer A and Schardt M.2020.A near real-time method for forest change detection based on a structural time series model and the kalman filter. Remote Sensing, 12(19): 3135 [DOI: 10.3390/rs12193135http://dx.doi.org/10.3390/rs12193135]
Qin X L, Chen E X and Li Z Y. 2006. Study on forest cover change monitoring based on MODIS data. Remote sensing technology and application. 21 ( 3 ) : 178-183
覃先林, 陈尔学, 李增元.2006. 基于 MODIS 数据的森林覆盖变化监测方法研究.遥感技术与应用,21 ( 3 ) : 178-183
Reiche J, Hamunyela E, Verbesselt J, Hoekman D and Herold M.2018.Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, 204: 147–161 [DOI: 10.1016/j.rse.2017.10.034http://dx.doi.org/10.1016/j.rse.2017.10.034]
Rodman K C, Robert A A, Thomas T V and Sarah J H.2021.Disturbance detection in landsat time series is influenced by tree mortality agent and severity, not by prior disturbance. Remote Sensing of Environment, 254: 112244 [DOI: 10.1016/j.rse.2020.112244http://dx.doi.org/10.1016/j.rse.2020.112244]
Rogers B M, Soja A J, Goulden M L and Randerson J T.2015.Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 8(3): 228-234 [DOI: 10.1038/NGEO2352http://dx.doi.org/10.1038/NGEO2352]
Saxena R, Watson L T, Wynne R H, Brooks E B, Thomas V A, Yang Z Q and Kennedy R E.2018.Towards a polyalgorithm for land use change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 217–234 [DOI: 10.1016/j.isprsjprs.2018.07.002http://dx.doi.org/10.1016/j.isprsjprs.2018.07.002]
Schleeweis K G, Moisen G G, Schroeder T A, Toney C, Freeman E A, Goward S N, Huang C Q and Dungan J L.2020. US National Maps Attributing Forest Change: 1986–2010. Forests, 11(6): 653 [DOI:10.3390/f11060653http://dx.doi.org/10.3390/f11060653]
Schroeder T A, Wulder M A, Healey S P and Moisen G G.2011.Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data. Remote Sensing of Environment, 115(6):1421-1433[DOI: 10.1016/j.rse.2011.01.022http://dx.doi.org/10.1016/j.rse.2011.01.022]
Sebald J, Senf C and Seidl R.2021.Human or natural? Landscape context improves the attribution of forest disturbances mapped from Landsat in Central Europe.Remote Sensing of Environment, 262: 112502 [DOI: 10.1016/j.rse.2021.112502http://dx.doi.org/10.1016/j.rse.2021.112502]
Senf C and Seidl R.2021a.Mapping the forest disturbance regimes of Europe. Nature sustainability, 4(1): 63–70 [DOI: 10.1038/s41893-020-00609-yhttp://dx.doi.org/10.1038/s41893-020-00609-y]
Senf C and Seidl R.2021b.Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 27(15): 3605–3619 [DOI: 10.1111/gcb.15679http://dx.doi.org/10.1111/gcb.15679]
Shen W J, Li M S and Huang C Q.2018.Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion. National Remote Sensing Bulletin, 22(6): 1005-1022
沈文娟, 李明诗, 黄成全.2018.长时间序列多源遥感数据的森林干扰监测算法研究进展.遥感学报, 22(6): 1005-1022 [DOI:10.11834/jrs.20187089http://dx.doi.org/10.11834/jrs.20187089]
Shen W J and Li M S.2017.Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations. Acta Ecologica Sinica, 37(5): 1438- 1449
沈文娟, 李明诗.2017.基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析.生态学报, 37(5): 1438- 1449 [DOI: 10.5846/stxb201510142074http://dx.doi.org/10.5846/stxb201510142074]
Shimizu K, Ota T, Mizoue N and Yoshida S.2019.A comprehensive evaluation of disturbance agents classification approaches: Strengths of ensemble classification, multiple indices, spatio-temporal variables, and direct prediction. ISPRS Journal of Photogrammetry and Remote Sensing, 158: 99–112 [DOI: 10.1016/j.isprsjprs.2019.10.004http://dx.doi.org/10.1016/j.isprsjprs.2019.10.004]
Silveira EMD, De Mello, JM and Acerbi. 2018a. Object-based land-cover change detection applied to brazilian seasonal savannahs using geostatistical features. International Journal of Remote Sensing, 39(8): 2597-2619 [DOI:10.1080/01431161.2018.1430397http://dx.doi.org/10.1080/01431161.2018.1430397]
Silveira E M O, Bueno I T, Acerbi-Junior F W, Mello J M, Scolforo J R S and Wulder M A.2018b.Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from landsat time series. Remote Sensing, 10(6): 808 [DOI: 10.3390/rs10060808http://dx.doi.org/10.3390/rs10060808]
Smith V, Portillo-Quintero C, Sanchez-Azofeifa A and Hernandez-Stefanoni J L.2019.Assessing the accuracy of detected breaks in landsat time series as predictors of small scale deforestation in tropical dry forests of mexico and costa rica. Remote Sensing of Environment, 221: 707-721 [DOI: 10.1016/j.rse.2018.12.020http://dx.doi.org/10.1016/j.rse.2018.12.020]
Sun D, Liu S P, Shen W J, Rao X Q, Guo Z F and Li Y Q.2018.Soil and water conservation effects of different plantations in southern subtropical area of China. Science of Soil and Water Conservation, 16(1): 72-79
孙聃, 刘素萍, 申卫军, 饶兴权, 郭志峰, 李永强.2018.南亚热带不同类型人工林的水土保持效应.中国水土保持科学, 16(1): 72-79[ DOI: 10.16843/j.sswc.2018.01.009]
Tang D M, Fan H and Zhang Y.2017.Review on Landsat time series change detection methods. Journal of Geo-information Science, 19(8): 1069- 1079
汤冬梅, 樊辉, 张瑶.2017.Landsat 时序变化检测综述.地球信息科学学报, 19(8): 1069-1079 [DOI: 10.3724/SP.J.1047.2017.01069http://dx.doi.org/10.3724/SP.J.1047.2017.01069]
Thom D and Seidl R.2016.Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews of the Cambridge Philosophical Society, 91(3): 760–781 [DOI: 10.1111/brv.12193http://dx.doi.org/10.1111/brv.12193]
Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J, Wigneron J P, Xiao X, Song X, Horion S, Rasmussen K, Saatchi S, Fan L, Wang K, Zhang B, Chen Z, Wang Y, Li X and Fensholt R.2020.Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 11(1): 129 [DOI: 10.1038/s41467-019-13798-8http://dx.doi.org/10.1038/s41467-019-13798-8]
Townshend J R, Masek J G and Huang C Q.2012.Global characterization and monitoring of forest cover using landsat data: Opportunities and challenges. International Journal of Digital Earth, 5(5): 373–397 [DOI: 10.1080/17538947.2012.713190http://dx.doi.org/10.1080/17538947.2012.713190]
Tyukavina A, Hansen M C, Potapov P V, Stehman S V, Smith-Rodriguez K, Okpa C and Aguilar R.2017.Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Science Advances, 3(4):e1601047[DOI: 10.1126/sciadv.1601047http://dx.doi.org/10.1126/sciadv.1601047]
Verbesselt J, Zeileis A and Herold M.2012.Near real-time disturbance detection using satellite image time series. Remote Sensing of Environment, 123: 98-108 [DOI: 10.1016/j.rse.2012.02.022http://dx.doi.org/10.1016/j.rse.2012.02.022]
Verbesselt J, Hyndman R, Newnham G and Culvenor D.2010a.Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106-115 [DOI: 10.1016/j.rse.2009.08.014http://dx.doi.org/10.1016/j.rse.2009.08.014]
Verbesselt J, Hyndman R, Zeileis A and Culvenor D.2010b.Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114(12): 2970-2980 [DOI: 10.1016/j.rse.2010.08.003http://dx.doi.org/10.1016/j.rse.2010.08.003]
Vogeler J C, Slesak R A, Fekety, P A and Falkowski M J. 2020. Characterizing over Four Decades of Forest Disturbance in Minnesota, USA. Forests, 11(3)[DOI:10.3390/F11030362]
Vogelmann J E, Gallant A L, Shi H and Zhu Z.2016.Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment, 185: 258-270 [DOI: 10.1016/j.rse.2016.02.060http://dx.doi.org/10.1016/j.rse.2016.02.060]
Wang Q K, Yu X F and Shu Q T.2017.Forest burned scars area extraction using time series remote sensing data. Journal of Natural Disasters, 26(1): 1-10
王乾坤, 于信芳, 舒清态.2017.基于时间序列遥感数据的森林火烧迹地提取.自然灾害学报, 26(1): 1-10 [DOI: 10.13577/j.jnd.2017.0101http://dx.doi.org/10.13577/j.jnd.2017.0101]
Wang Z H, Yao W Y, Tang Q H, Liu L Y, Xiao P Q, Kong X B, Zhang P, Shi F X and Wang Y J.2018.Continuous change detection of forest/grassland and cropland in the loess plateau of China using all available Landsat data. Remote Sensing, 10(11): 1775 [DOI: 10.3390/rs10111775http://dx.doi.org/10.3390/rs10111775]
Wozniak E S. Aleksansdrowicz. 2019. Self-Adjusting Thresholding for Burnt Area Detection Based on Optical Images. Remote Sensing, 11(22):2669 [DOI:10.1080/0143116031000139863http://dx.doi.org/10.1080/0143116031000139863]
Woodcock C E, Loveland T R, Herold M and Bauer M E.2020.Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sensing of Environment,238:111558 [DOI: 10.1016/j.rse.2019.111558http://dx.doi.org/10.1016/j.rse.2019.111558]
Wu L, Liu X N, Liu M L, Yang J H, Zhu L H and Zhou B T.2022.Online forest disturbance detection at the sub-annual scale using spatial context from sparse Landsat time series.IEEE Transactions on Geoscience and Remote Sensing, 60: 1-14 [DOI: 10.1109/TGRS.2022.3145675http://dx.doi.org/10.1109/TGRS.2022.3145675]
Wu L, Li Z L, Liu X N, Zhu L H, Tang Y B, Zhang B Y, Xu B L, Liu M L, Meng Y Y and Liu B Y.2020.Multi-type forest change detection using BFAST and monthly landsat time series for monitoring spatiotemporal dynamics of forests in subtropical wetland. Remote Sensing, 12(2): 341 [DOI: 10.3390/rs12020341http://dx.doi.org/10.3390/rs12020341]
Wulder M A, Loveland T R, Roy D P, Crawford C J, Masek J G, Woodcock C E, Allen R G, Anderson M C, Belward A S, Cohen W B, Dwyer J, Erb A, Gao F, Griffiths P, Helder D, Hermosilla T, Hipple J, Hostert P, Hughes M J and Huntington, J.2019.Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225: 127-147 [DOI: 10.1016/j.rse.2019.02.015http://dx.doi.org/10.1016/j.rse.2019.02.015]
Wulder M A, White J C, Loveland T R, Woodcock C E, Belward A S, Cohen W B, Fosnight E A, Shaw J, Masek J G and Roy D P.2016.The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185: 271-283 [DOI: 10.1016/j.rse.2015.11.032http://dx.doi.org/10.1016/j.rse.2015.11.032]
Xie F D, Yu S S and Yang J. 2018. A new semi-supervised change monitoring method based on spatial information fusion. Bulletin of Surveying and Mapping, 1:50-54
谢福鼎,于珊珊,杨俊.一种新的融合空间信息的半监督变化监测方法.测绘通报, 2018( 1) : 50-54.DOI: 10.13474 /j.cnki.11-2246.2018.0009http://dx.doi.org/10.13474/j.cnki.11-2246.2018.0009
Xu R, Li Y, Teuling A J, Zhao L, Spracklen D V, Garcia-Carreras L, Meier R, Chen L, Zheng Y, Lin H and Fu B.2022.Contrasting impacts of forests on cloud cover based on satellite observations. Nature Communications, 13(1): 670 [DOI: 10.1038/s41467-022-28161-7http://dx.doi.org/10.1038/s41467-022-28161-7]
Yang Y, Anderson M, Gao F, Hain C, Noormets A, Sun G, Wynne R, Thomas V and Sun L.2020.Investigating impacts of drought and disturbance on evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed data. Remote Sensing of Environment, 238: 111018 [DOI: 10.1016/j.rse.2018.12.017http://dx.doi.org/10.1016/j.rse.2018.12.017]
Yang C, Shen R P, Yu D W, Liu R G and Chen J M.2013.Forest disturbance monitoring based on the time series trajectory of remote sensing index. National Remote Sensing Bulletin, 17(5): 1246-1263
杨辰, 沈润平, 郁达威, 刘荣高, 陈镜明.2013.利用遥感指数时间序列轨迹监测森林扰动.遥感学报, 17(5): 1246-1263 [DOI: 10.11834/jrs.20132308http://dx.doi.org/10.11834/jrs.20132308]
Ye S, Rogan J, Zhu Z, Hawbaker T J, Hart S J, Andrus R A, Meddens A J H, Hicke J A, Eastman J R and Kulakowski D.2021.Detecting subtle change from dense Landsat time series: Case studies of mountain pine beetle and spruce beetle disturbance. Remote Sensing of Environment, 263 [DOI: 10.1016/j.rse.2021.112560http://dx.doi.org/10.1016/j.rse.2021.112560]
Yin Q D, Liu C X and Tian Y.2020.Detecting dynamics of vegetation disturbance in forest natural reserve using Landsat imagery and LandTrendr algorithm: the case of Chaisong and Taibaishan Natural Reserves in Shaanxi, China. Acta Ecologica Sinica, 40(20):7343- 7352
殷崎栋, 柳彩霞, 田野.2020.基于Landsat时序影像和LandTrendr算法的森林保护区植被扰动研究:以陕西柴松和太白山保护区为例.生态学报, 40(20): 7343-7352 [DOI: 10.5846/stxb201910112115http://dx.doi.org/10.5846/stxb201910112115]
Zhan Q B, Xu Y and Zhang S Y.2016.Interaction between pest insect outbreaks and forest fires.Forest Pest and Disease, 1: 8-12
詹庆斌, 徐妍, 张思玉.2016.虫害暴发与森林火灾发生的动态交互影响.中国森林病虫, 1: 8-12 [DOI: 10.3969/j.issn.1671-0886.2016.01.003http://dx.doi.org/10.3969/j.issn.1671-0886.2016.01.003]
Zhang B Y.2019.Change Detection of Semi-arid Forest Ecosystem Based on Remote Sensing Time Series Analysis.China University of Geosciences(Beijing)
张弼尧.2019.基于遥感时序分析的半干旱地区森林生态系统变化研究.中国地质大学(北京)博士学位论文 [DOI: 10.27493/d.cnki.gzdzy.2019.000039http://dx.doi.org/10.27493/d.cnki.gzdzy.2019.000039]
Zhang J T, Lin J and Li X. 2018. SAR image change detection based on fractal dimension. Journal of Xi'an Technological University. 5:466-470
张军团, 林君, 李绚. 基于分形维数的SAR图像变化检测. 西安工业大学学报 5:466-470
Zhang L F, Wang S, Liu H L, Lin Y K, Wang J N, Zhu M, Gao L R and Tong Q X.2021.From Spectrum to Spectrotemporal: Research on Time Series Change Detection of Remote Sensing. Geomatics and Information Science of Wuhan University, 46(4): 451-468
张立福, 王飒, 刘华亮, 林昱坤, 王晋年, 朱曼, 高了然, 童庆禧.2021.从光谱到时谱——遥感时间序列变化检测研究进展.武汉大学学报(信息科学版), 46(4): 451-468 [DOI: 10.13203/j.whugis20200666http://dx.doi.org/10.13203/j.whugis20200666]
Zhang L P and Wu C.2017.Advance and Future Development of Change Detection for Multi-temporal Remote Sensing Imagery. Acta Geodaetica et Cartographica Sinica, 46(10): 1447-1459
张良培, 武辰.2017.多时相遥感影像变化检测的现状与展望.测绘学报, 46(10): 1447-1459 [DOI: 10.11947/j.AGCS.2017.20170340http://dx.doi.org/10.11947/j.AGCS.2017.20170340]
Zhang X, Chen G S,Cai L X, Jiao H B,Hua J W,Luo X F and Wei X L. 2021. Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery. Sustainability, 13(4893):4893 [DOI:10.3390/su13094893http://dx.doi.org/10.3390/su13094893]
Zhang Y and Ding Y F.2019.Analysis on spatial distribution of forest disasters in China. Journal of Beijing Forestry University, 41(3): 68-79
张颖, 丁昱菲.2019.我国森林灾害的空间分布分析.北京林业大学学报, 41(3):68-79 [DOI: 10.13332/j.1000-1522.20180254http://dx.doi.org/10.13332/j.1000-1522.20180254]
Zhang Y T,Woodcock C E, Chen S J, Wang J A, Sulla-Menashe D, Zuo Z P, Olofsson P, Wang Y T J and Friedl M A. 2022. Mapping causal agents of disturbance in boreal and arctic ecosystems of north america using time series of landsat data. Remote Sensing of Environment, 272 [DOI:10.1016/j.rse.2022.112935http://dx.doi.org/10.1016/j.rse.2022.112935]
Zhang Z L and Lu P. 2019. Object Oriented Classification of High -resolution Remote Sensing Image for Monitoring the Change of Forest Vegetation by Comparison. Shaanxi Forest Science and Technology,47(3):47-50
章紫粼,卢 鹏. 2019. 面向对象的高分辨率遥感影像森林植被变化检测方法对比研究. 陕 西 林 业 科 技,47(3):47-50
Zhao Z M, Meng Y, Yue A Z, Huang Q Q, Kong Y L, Yuan Y, Liu X Y, Lin L and Zhang M M.2016.Review of remotely sensed time series data for change detection. National Remote Sensing Bulletin, 20(5): 1110–1125
赵忠明, 孟瑜, 岳安志, 黄青青, 孔赟珑, 袁媛, 刘晓奕, 林蕾, 张蒙蒙.2016.遥感时间序列影像变化检测研究进展.遥感学报, 20(05): 1110-1125 [DOI: 10.11834/jrs.20166170http://dx.doi.org/10.11834/jrs.20166170]
Zheng Z H, Bai W L and Jiang T.2021.An Improved VCT Long Time Series Forest Disturbance Method. Journal of Geomatics Science and Technology, 38(1): 39-43
郑志豪, 白万里, 江涛.2021.改进的 VCT 长时间序列森林干扰方法.测绘科学技术学报, 38(1): 39-43 [DOI: 10.3969/j.issn.1673-6338.2021.01.007http://dx.doi.org/10.3969/j.issn.1673-6338.2021.01.007]
Zhu Z, Zhang J, Yang Z, Aljaddani A H, Cohen W B, Qiu S and Zhou C.2020.Continuous monitoring of land disturbance based on Landsat time series. Remote Sensing of Environment, 238: 111116[DOI: 10.1016/j.rse.2019.03.009http://dx.doi.org/10.1016/j.rse.2019.03.009]
Zhu Z, Wulder M A, Roy D P, Woodcock C E, Hansen M C, Radeloff V C, Healey S P, Schaaf C, Hostert P, Strobl P, Pekel J F, Lymburner L, Pahlevan N and Scambos T A.2019.Benefits of the Free and Open Landsat Data Policy. Remote Sensing of Environment, 224: 382-385 [DOI: 10.1016/j.rse.2019.03.009http://dx.doi.org/10.1016/j.rse.2019.03.009]
Zhu Z.2017.Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing,130:370–384 [DOI:10.1016/j.isprsjprs.2017.06.013http://dx.doi.org/10.1016/j.isprsjprs.2017.06.013]
Zhu Z and Woodcock C E.2014.Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144: 152–171 [DOI: 10.1016/j.rse.2014.01.011http://dx.doi.org/10.1016/j.rse.2014.01.011]
相关作者
相关机构