Refined wetland classification of international wetland cities based on the random forest algorithm and knowledge-driven rules: A case study of Changde city, China
- Vol. 27, Issue 6, Pages: 1426-1440(2023)
DOI: 10.11834/jrs.20232293
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
邓雅文,蒋卫国,王晓雅,彭凯锋.2023.基于随机森林算法和知识规则的国际湿地城市精细湿地分类——以常德市为例.遥感学报,27(6): 1426-1440
Deng Y W, Jiang W G, Wang X Y and Peng K F. 2023. Refined wetland classification of international wetland cities based on the random forest algorithm and knowledge-driven rules: A case study of Changde city, China. National Remote Sensing Bulletin, 27(6):1426-1440
获取精细湿地资源信息对国际湿地城市湿地修复保护、管理利用以及区域可持续发展至关重要,目前面向国际湿地城市的湿地精细分类研究较为缺乏,尤其是针对湿地中水体的详细类别划分较少。本研究以全球典型国际湿地城市常德市为案例研究区,基于Google Earth Engine(GEE)云计算平台和2020年Sentinel-1/2时序遥感影像以及地形数据,首先采用最小冗余最大相关算法和递归梯度提升树算法进行湿地分类特征集优选,进而构建集成基于像元的随机森林和面向对象的知识规则决策模型的城市湿地精细分类智能模型,以实现常德市湿地资源精细分类。结果表明:(1)湿地分类特征优选前后特征数由63减少为16,总体精度下降0.9%,其中旱期的水体指数、植被频率和建成区指数的特征重要性较大,特征优选可以减少特征数据信息冗余、提高分类效率;(2)常德市湿地精细分类结果包括河流、湖泊、水库、养殖池/坑塘、运河/水渠、泥滩地、草滩地和芦苇湿地8种湿地类型,总体精度达91.53%,Kappa系数为0.89,可以满足国际湿地城市精细湿地分类的需求;(3)常德市湿地主要分布在东部西洞庭湖平原区域,呈现出东多西少的空间格局。本研究综合利用多源遥感数据、GEE云计算平台、机器学习算法以及知识规则模型能够准确高效地提取国际湿地城市精细湿地信息,有望迁移至其他城市湿地制图应用,在服务国际湿地城市创建及优选、湿地资源修复保护与可持续开发利用等方面具有较大应用潜力。
Obtaining refined wetland resource information is important for the restoration, protection, management, and utilization of wetlands in international wetland cities and for regional sustainable development. At present, refined wetland classification research for international wetland cities is lacking, especially for the detailed classification of water bodies in wetlands. Refined wetland classification results could provide vital information support for the nomination and assessment of potential or existing international wetland cities.,This study takes Changde City, a typical international wetland city, as the case study area. On the basis of the Google Earth Engine (GEE) cloud computing platform and Sentinel 1/2 time series remote sensing data and terrain data in 2020, the minimum redundancy-maximum correlation algorithm and the recursive gradient boosting tree algorithm are first used to optimize the wetland classification feature set. Then, an intelligent model for refined urban wetland classification integrating pixel-based random forest and object-oriented knowledge rule decision model is constructed to realize the refined classification of wetland resources in Changde City.,Using multisource remote sensing data, the GEE cloud computing platform, a machine learning algorithm, and knowledge-driven rule-based model, this study can accurately and efficiently extract refine wetland information of international wetland cities. The methodology developed in this study could be operationally transferred to other urban wetland mapping and has great application potential in the nomination and management of international wetland cities as well as the restoration, protection, and sustainable development and utilization of wetland resources.,The results are as follows,2,(1) The number of features before and after the optimization of wetland classification features is reduced from 63 to 16, and the overall accuracy is reduced by 0.9%. The characteristics of water index, vegetation frequency, antd built-up area index in the dry period are of great importance, and feature optimization can reduce the redundancy of feature data and improve the classification efficiency. (2) The results of the fine classification of wetlands in Changde City include eight wetland types: rivers, lakes, reservoirs, aquaculture ponds/pits, canals, mudflats, sedge and reed with an overall accuracy of 91.53% and a kappa coefficient of 0.89. These results meet the requirements for the fine wetland classification of international wetland cities, indicating that the precision of the urban wetland refine classification method framework is high. (3) Wetlands in Changde City are mainly distributed in the eastern and western parts of the Dongting Lake Plain, showing a spatial pattern of more in the east and less in the west.
湿地精细分类随机森林知识规则Sentinel国际湿地城市常德市
wetland classificationrandom forestknowledge-based rulesSentinel-1/2international wetland citiesChangde city
Adeli S, Salehi B, Mahdianpari M, Quackenbush L J, Brisco B, Tamiminia H and Shaw S. 2020. Wetland monitoring using SAR data: a meta-analysis and comprehensive review. Remote Sensing, 12(14): 2190 [DOI: 10.3390/rs12142190http://dx.doi.org/10.3390/rs12142190]
Amani M, Brisco B, Afshar M, Mirmazloumi S M, Mahdavi S, Mirzadeh S M J, Huang W M and Granger J. 2019. A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing. Big Earth Data, 3(4): 378-394 [DOI: 10.1080/20964471. 2019.1690404http://dx.doi.org/10.1080/20964471.2019.1690404]
Amani M, Ghorbanian A, Ahmadi S A, Kakooei M, Moghimi A, Mirmazloumi S M, Moghaddam S H A, Mahdavi S, Ghahremanloo M, Parsian S, Wu Q S and Brisco B. 2020. Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5326-5350 [DOI: 10.1109/JSTARS.2020.3021052http://dx.doi.org/10.1109/JSTARS.2020.3021052]
Amani M, Salehi B, Mahdavi S, Granger J E, Brisco B and Hanson A. 2017. Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador, Canada. Canadian Journal of Remote Sensing, 43(4): 360-373 [DOI: 10.1080/07038992.2017.1346468http://dx.doi.org/10.1080/07038992.2017.1346468]
Berhane T M, Lane C R, Wu Q S, Autrey B C, Anenkhonov O A, Chepinoga V V and Liu H X. 2018. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sensing, 10(4): 580 [DOI: 10.3390/rs10040580http://dx.doi.org/10.3390/rs10040580]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/A:1010933404324http://dx.doi.org/10.1023/A:1010933404324]
Chatziantoniou A, Psomiadis E and Petropoulos G P. 2017. Co-Orbital Sentinel 1 and 2 for LULC mapping with emphasis on wetlands in a mediterranean setting based on machine learning. Remote Sensing, 9(12): 1259 [DOI: 10.3390/rs9121259http://dx.doi.org/10.3390/rs9121259]
Chen J and Su J. 2020. Fully promote the great wetland protection and create a “new business card” for the green development of Changde. Forestry and Ecology, (2): 6-7
陈建, 苏俊. 2020. 全力推进湿地大保护 打造常德绿色发展“新名片”. 林业与生态, (2): 6-7 [DOI: 10.13552/j.cnki.lyyst.2020.02.003http://dx.doi.org/10.13552/j.cnki.lyyst.2020.02.003]
Chen Y, An L J, Chen H and Feng C. 2022. Declaration of “International Wetland City” and wetland environmentally friendly behavior: an empirical study based on Huai’an. Journal of Nanjing Normal University (Natural Science Edition), 45(1): 96-103
陈彦, 安礼杰, 陈红, 丰超. 2022. “国际湿地城市”申报和湿地亲环境行为——基于淮安的实证研究. 南京师大学报(自然科学版), 45(1): 96-103 [DOI: 10.3969/j.issn.1001-4616.2022.01.014http://dx.doi.org/10.3969/j.issn.1001-4616.2022.01.014]
Ding C and Peng H C. 2005. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(2): 185-205 [DOI: 10.1142/s0219720005001004http://dx.doi.org/10.1142/s0219720005001004]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Guo M, Li J, Sheng C L, Xu J W and Wu L. 2017. A review of wetland remote sensing. Sensors, 17(4): 777 [DOI: 10.3390/s17040777http://dx.doi.org/10.3390/s17040777]
Han Y, Ke Y H, Wang Z P, Liang D Y and Zhou D M. 2021. Classification of the Yellow River Delta wetland landscape based on ZY1-02hyperspectral imageryD. National Remote Sensing Bulletin
韩月, 柯樱海, 王展鹏, 梁德印, 周德民. 2021. 资源一号02D卫星高光谱数据黄河三角洲湿地景观分类. 遥感学报 [DOI: 10.11834/jrs.20211071http://dx.doi.org/10.11834/jrs.20211071]
He R, Zhao Y L, Xu Z G, Duam C C, Tao Y S and Peng J. 2016. Changes of land use and waterfowl habitats in western Dongting Lake from 1989 to 2013. Journal of Southwest Forestry University, 36(4): 115-120
何锐, 赵运林, 徐正刚, 段酬苍, 陶彦妤, 彭姣. 2016. 1989-2013年西洞庭湖土地类型及水禽栖息地变动研究. 西南林业大学学报, 36(4): 115-120 [DOI: 10.11929/j.issn.2095-1914.2016.04.019http://dx.doi.org/10.11929/j.issn.2095-1914.2016.04.019]
Hird J N, DeLancey E R, McDermid G J and Kariyeva J. 2017. Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sensing, 9(12): 1315 [DOI: 10.3390/rs9121315http://dx.doi.org/10.3390/rs9121315]
Huang Q, Jiang J H, Lai X J and Sun Z D. 2013. Changes of landscape structure in Dongting Lake wetlands and the evaluation on impacts from operation of the Three Gorges Project. Resources and Environment in the Yangtze Basin, 22(7): 922-927
黄群, 姜加虎, 赖锡军, 孙占东. 2013. 洞庭湖湿地景观格局变化以及三峡工程蓄水对其影响. 长江流域资源与环境, 22(7): 922-927
Kaplan G and Avdan U. 2019. Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. Catena, 178: 109-119 [DOI: 10.1016/j.catena.2019.03.011http://dx.doi.org/10.1016/j.catena.2019.03.011]
Lei J R, Xu H B, Cui L J, Zhang M Y, Li W and Li J. 2018. A new identity of cities: the wetland city accreditation of the Ramsar Convention. Wetland Science and Management, 14(3): 23-26
雷茵茹, 徐慧博, 崔丽娟, 张曼胤, 李伟, 李晶. 2018. 赋予城市新身份: 《湿地公约》湿地城市认证系统. 湿地科学与管理, 14(3): 23-26 [DOI: 10.3969/j.issn.1673-3290.2018.03.05http://dx.doi.org/10.3969/j.issn.1673-3290.2018.03.05]
Li C H, Zheng X K, Niu S F, Cai Y P, Shen N and Pang A P. 2009. Research progress in protection and restoration of urban wetlands. Progress in Geography, 28(2): 271-279
李春晖, 郑小康, 牛少凤, 蔡宴朋, 沈楠, 庞爱萍. 2009. 城市湿地保护与修复研究进展. 地理科学进展, 28(2): 271-279 [DOI: 10.11820/dlkxjz.2009.02.016http://dx.doi.org/10.11820/dlkxjz.2009.02.016]
Liu H, Gong P, Wang J, Clinton N, Bai Y Q and Liang S L. 2020. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System Science Data, 12(2): 1217-1243 [DOI: 10.5194/essd-12-1217-2020http://dx.doi.org/10.5194/essd-12-1217-2020]
Liu H Y, Lü X G and Zhang S K. 2004. Landscape biodiversity of wetlands and their changes in 50 years in watersheds of the Sanjiang Plain. Acta Ecologica Sinica, 24(7): 1472-1479
刘红玉, 吕宪国, 张世奎. 2004. 三江平原流域湿地景观多样性及其50年变化研究. 生态学报, 24(7): 1472-1479 [DOI: 10.3321/j.issn:1000-0933.2004.07.023http://dx.doi.org/10.3321/j.issn:1000-0933.2004.07.023]
Liu L, Zang S Y, Shao T T, Wei J H and Song K S. 2015. Characterization of lake morphology in China using remote sensing and GIS. Remote Sensing For Land Resource, 27(3): 92-98
刘蕾, 臧淑英, 邵田田, 魏锦宏, 宋开山. 2015. 基于遥感与GIS的中国湖泊形态分析. 国土资源遥感, 27(3): 92-98 [DOI: 10.6046/gtzyyg.2015.03.16http://dx.doi.org/10.6046/gtzyyg.2015.03.16]
Liu S L, Mei B Q, Zhang J X, Peng B Y and Peng P B. 2018. Current status of biodiversity and conservation strategy for West Dongting Lake Wetland. Wetland Science and Management, 14(2): 16-19
刘松林, 梅碧球, 张纪祥, 彭波涌, 彭平波. 2018. 西洞庭湖湿地生物多样性现状与保护对策. 湿地科学与管理, 14(2): 16-19 [DOI: 10.3969/j.issn.1673-3290.2018.02.04http://dx.doi.org/10.3969/j.issn.1673-3290.2018.02.04]
Ma Z W and Zhang M X. 2015. Prospective on development trends of international wetland conservation and management from the 12th meeting of the conference of the parties of the convention on wetlands. Wetland Science, 13(5): 523-527
马梓文, 张明祥. 2015. 从《湿地公约》第12次缔约方大会看国际湿地保护与管理的发展趋势. 湿地科学, 13(5): 523-527 [DOI: 10.13248/j.cnki.wetlandsci.2015.05.001http://dx.doi.org/10.13248/j.cnki.wetlandsci.2015.05.001]
Mahdavi S, Salehi B, Granger J, Amani M, Brisco B and Huang W M. 2018. Remote sensing for wetland classification: a comprehensive review. GIScience and Remote Sensing, 55(5): 623-658 [DOI: 10.1080/15481603.2017.1419602http://dx.doi.org/10.1080/15481603.2017.1419602]
Mao D H, Wang Z M, Du B J, Li L, Tian Y L, Jia M M, Zeng Y, Song K S, Jiang M and Wang Y Q. 2020. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 11-25 [DOI: 10.1016/j.isprsjprs.2020.03.020http://dx.doi.org/10.1016/j.isprsjprs.2020.03.020]
Ning X G, Chang W T, Wang H, Zhang H C and Zhu Q D. 2022. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. National Remote Sensing Bulletin, 26(2): 386-396
宁晓刚, 常文涛, 王浩, 张翰超, 朱乾德. 2022. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取. 遥感学报, 26(2): 386-396 [DOI: 10.11834/jrs.20200033http://dx.doi.org/10.11834/jrs.20200033]
Peng K F, Jiang W G, Hou P, Ling Z Y, Niu Z G, Mao D H and Huang Z. 2021. Dense wetland sample production at large scale by combining multi-source thematic datasets and visual interpretation. National Remote Sensing Bulletin
彭凯锋, 蒋卫国, 侯鹏, 凌子燕, 牛振国, 毛德华, 黄卓. 2021. 结合多源专题数据和目视解译的大区域密集湿地样本数据生产. 遥感学报 [DOI: 10.11834/jrs.20211152http://dx.doi.org/10.11834/jrs.20211152]
Slagter B, Tsendbazar N E, Vollrath A and Reiche J. 2020. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 86: 102009 [DOI: 10.1016/j.jag.2019.102009http://dx.doi.org/10.1016/j.jag.2019.102009]
Wang A Q, Zhou D M and Gong H L. 2012. A research on method of wetland vegetation identification and classification based on radar backscatter characteristics. Remote Sensing Information, (2): 15-19
王安琪, 周德民, 宫辉力. 2012. 基于雷达后向散射特性进行湿地植被识别与分类的方法研究. 遥感信息, (2): 15-19 [DOI: 10.3969/j.issn.1000-3177.2012.02.003http://dx.doi.org/10.3969/j.issn.1000-3177.2012.02.003]
Wang C H, Peng Y L and Wang Y. 2010. Plant diversity of wetland communities in the Changde City, China. Pratacultural Science, 27(12): 96-101
王朝晖, 彭友林, 王云. 2010. 常德市湿地植物多样性初步研究. 草业科学, 27(12): 96-101 [DOI: 10.3969/j.issn.1001-0629.2010.12.016http://dx.doi.org/10.3969/j.issn.1001-0629.2010.12.016]
Wang H, Liu M X, Zhao Y W and Wen Y L. 2017. International wetland city accreditation and suggestions for its implementation in China. World Forestry Research, 30(6): 6-11
王会, 刘明昕, 赵亚文, 温亚利. 2017. 国际湿地城市认证及推进的建议. 世界林业研究, 30(6): 6-11 [DOI: 10.13348/j.cnki.sjlyyj.2017.0073.yhttp://dx.doi.org/10.13348/j.cnki.sjlyyj.2017.0073.y]
Xiong J. 2019. Making wetland ecology sustainable and beautiful--Exploration and practice of Changde City in building an international wetland City. Forestry and Ecology, (2): 6-7
熊杰. 2019. 让湿地生态永续优美——常德市创建国际湿地城市的探索实践. 林业与生态, (2): 6-7 [DOI: 10.13552/j.cnki.lyyst.2019.02.003http://dx.doi.org/10.13552/j.cnki.lyyst.2019.02.003]
Yang L, Wang L C, Yu D Q, Yao R, Li C, He Q H, Wang S Q and Wang L Z. 2020. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978-2018. Journal of Hydrology, 587: 124954 [DOI: 10.1016/j.jhydrol.2020.124954http://dx.doi.org/10.1016/j.jhydrol.2020.124954]
You J, Zhang H Q, Chen Y F, Liu H and Gao Z H. 2016. Comparative study of Dongting lake wetland information extraction based on GF-4 Satellite image. Spacecraft Recovery and Remote Sensing, 37(4): 116-122
由佳, 张怀清, 陈永富, 刘华, 高志海. 2016. 基于“高分四号”卫星影像洞庭湖湿地信息提取. 航天返回与遥感, 37(4): 116-122 [DOI: 10.3969/j.issn.1009-8518.2016.04.016http://dx.doi.org/10.3969/j.issn.1009-8518.2016.04.016]
Zhang G Q. 2019. China lake dataset (1960s-2020). A Big Earth Data Platform for Three Poles
张国庆. 2019. 中国湖泊数据集(1960s-2020). 时空三极环境大数据平台 [DOI: 10.11888/Hydro.tpdc.270302http://dx.doi.org/10.11888/Hydro.tpdc.270302]
Zhang L, Gong Z N, Wang Q W, Jin D D and Wang X. 2019. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Journal of Remote Sensing, 23(2): 313-326
张磊, 宫兆宁, 王启为, 金点点, 汪星. 2019. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取. 遥感学报, 23(2): 313-326 [DOI: 10.11834/jrs.20198083http://dx.doi.org/10.11834/jrs.20198083]
Zhang X, Liu L Y, Chen X D, Gao Y, Xie S and Mi J. 2021. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 13(6): 2753-2776 [DOI: 10.5194/essd-13-2753-2021http://dx.doi.org/10.5194/essd-13-2753-2021]
Zhao X Y, Tian B, Niu Y, Chen C P and Zhou Y X. 2022. Classification of coastal salt marsh based on Sentinel-1 time series backscattering characteristics: the case of the Yangtze River delta. National Remote Sensing Bulletin, 26(4): 672-682
赵欣怡, 田波, 牛莹, 陈春鹏, 周云轩. 2022. Sentinel-1时序后向散射特征的海岸带盐沼植被分类——以长江口为例. 遥感学报, 26(4): 672-682 [DOI: 10.11834/jrs.20229303http://dx.doi.org/10.11834/jrs.20229303]
Zhao Z Y, Anand R and Wang M. 2019. Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform//2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Washington: IEEE: 442-452 [DOI: 10.1109/DSAA.2019.00059http://dx.doi.org/10.1109/DSAA.2019.00059]
Zhu X. 2014. Geography of Hunan Province. Beijing: Beijing Normal University Press
朱翔. 2014. 湖南地理. 北京: 北京师范大学出版社
相关文章
相关作者
相关机构