Mapping methane super-emitters in China and United States with GF5-02 hyperspectral imaging spectrometer
- Pages: 1-15(2023)
DOI: 10.11834/jrs.20232453
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
李飞,孙世玮,张永光,封晨曦,陈翠红,毛慧琴,刘银年.XXXX.高分五号02星高光谱成像仪中美典型甲烷超级排放源遥感反演与分析.遥感学报,XX(XX): 1-15
LI Fei,SUN Shiwei,ZHANG Yongguang,FENG Chenxi,CHEN Cuihong,MAO Huiqin,LIU Yinnian. XXXX. Mapping methane super-emitters in China and United States with GF5-02 hyperspectral imaging spectrometer. National Remote Sensing Bulletin, XX(XX):1-15
检测和估算化石燃料生产活动中的甲烷泄漏有助于甲烷减排。星载高光谱成像仪是甲烷排放点源遥感监测的重要技术手段。本研究利用国产高分五号02星(GF5-02)获取的高光谱成像仪(AHSI)与欧空局哨兵五号星(Sentinal-5P)的对流层观测仪(TROPOMI)遥感数据,基于优化的甲烷柱浓度反演算法和中尺度气象模式,开展了对中美两国煤矿和油气设施的甲烷排放点源检测、量化以及不确定性评估。实验结果表明:1)GF5-02星AHSI载荷在中美两国甲烷排放热点区域内探测到了四处显著的甲烷点源泄漏排放,排放速率均大于0.5吨/小时。其中,在二叠纪盆地监测到一处超级排放源,甲烷排放量高达11.7 ± 4.4吨/小时;2)甲烷点源排放通量速率的估算会受到背景气象场的影响,点源处风速的不确定性贡献最大。研究结果表明GF5-02星高光谱成像仪在全球甲烷点源遥感识别和排放量估算中的应用潜力,可以为未来全球能源行业的甲烷泄漏检测工作提供重要数据支撑。
The detection and estimation of methane leaks from fossil fuel production activities enable the action to reduce methane emissions. Spaceborne imaging spectrometer is an important technology for remote sensing monitoring of methane point emissions. This study uses the remote sensing data acquired by the Advanced Hyperspectral Imager (AHSI) onboard domestic Gaofen5-02 satellite (i.e., GF5-02-AHSI) and TROPOspheric Monitoring Instrument (TROPOMI) onboard European Space Agency’s Sentinel-5 Precursor satellite (Sentinel-5P), based on the optimized methane column concentration retrieval algorithm and the mesoscale meteorological model to identify, quantify and assess uncertainty of the methane point emissions from coal mines and oil/gas facilities in China and the United States. The results show that: 1) GF5-02-AHSI has detected four significant methane point source leak emissions in methane hotspot regions of China and the United States, with the emission rates greater than 0.5 tons per hour. A super-emitter is detected in the Permian basin, and the emission amount is 11.7 ± 4.4 tons per hour; 2) The estimation of methane point source emission flux rate is affected by the background meteorological field, and the uncertainty of wind speed at the point source is the largest contribution. The research results demonstrate the potential of GF5-02-AHSI in remote sensing identification and estimation of global methane point emissions, which can provide important data support for future methane leak detection in the global energy industry.ObjectiveRapid identification of anomalous methane sources in fossil fuel industry would enable action to reduce greenhouse gas emissions. Spaceborne hyperspectral imaging spectrometers have recently been shown to be instrumental for this mission. In this study, we take advantage of the rapid development of spaceborne imaging spectroscopy technology and data processing methods to perform the satellite-based large-scale and high-resolution survey of methane super-emitters in China and the United States. Our dataset is acquired by the Advanced Hyperspectral Imager (AHSI) onboard domestic Gaofen5-02 satellite (i.e., GF5-02-AHSI) and TROPOspheric Monitoring Instrument (TROPOMI) onboard European Space Agency’s Sentinel-5 Precursor satellite (Sentinel-5P). Our core objective is to identify, quantify and assess uncertainty of the methane point emissions from coal mines and oil/gas facilities in China and the United States, with the overarching motivation of assisting future emission reduction efforts.MethodResultConclusionThese findings demonstrate that the potential of GF5-02-AHSI in remote sensing identification and estimation of global methane point emissions, which can provide important data support for future methane leak detection in the global energy industry.Major steps include (1) We retrieval methane concentration enhancements (i.e., increments above background levels in the amount of methane present in the atmospheric column, ∆X,CH4,) using the optimized matched-filter algorithm applied to GF5-02-AHSI spectra in the 2300 nm shortwave infrared spectral region; (2) The detection of emission plumes in the ∆X,CH4, maps is based on a semi-automatic method; (3) We estimate the source rate (Q) for individual methane plume using the integrated mass enhancement (IME) method; (4) We estimate uncertainties in Q by propagating random errors in IME and ,U,10, to a 1-σ precision error in Q. A 50% random error in wind speed is assumed for ,U,10, data, which is consistent with the ~1.5 m/s error standard deviation in wind speed; (5) We further assess the magnitude of our estimated plume-level emission rates through a simulation-based study with the Weather Research Forecast model coupled with Large Eddy Simulation (WRF-LES).Major findings include (1) GF5-02-AHSI has detected four significant methane point source leak emissions in methane hotspot regions of China and the United States, with the emission rates greater than 0.5 tons per hour. A super-emitter is detected in the Permian basin, and the emission amount is 11.7 ± 4.4 tons per hour; (2) The estimation of methane point source emission flux rate is affected by the background meteorological field, and the uncertainty of wind speed at the point source is the largest contribution.
高分五号02星(GF5-02)甲烷反演点源排放长治二叠纪盆地
Gaofen5-02 satellite (GF5-02)methane retrievalpoint source emissionsChangzhiPermian basin
Alvarez R A, Zavala-Araiza D, Lyon D R, Allen D T, Barkley Z R, Brandt A R, Davis K J, Herndon S C, Jacob D J, Karion A, Kort E A, Lamb B K, Lauvaux T, Maasakkers J D, Marchese A J, Omara M, Pacala S W, Peischl J, Robinson A L, Shepson P B, Sweeney C, Townsend-Small A, Wofsy S C and Hamburg S P. 2018. Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361 (6398):186-188 [DOI: 10.1126/science.aar7204http://dx.doi.org/10.1126/science.aar7204]
Berk A, Conforti P, Kennett R, Perkins T, Hawes F and Van Den Bosch J. 2014. MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. In: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-4.
Boccia V, Adams J, Thome K J, Turpie K R, Kokaly R, Bouvet M, Green R O and Rast M. 2021. NASA-ESA Cooperation on the SBG and CHIME Hyperspectral Satellite Missions: a roadmap for the joint Working Group on Cal/Val activities. In: EGU General Assembly Conference Abstracts, pp. EGU21-15166.
Brandt A R, Heath G A and Cooley D. 2016. Methane leaks from natural gas systems follow extreme distributions. Environmental Science and Technology, 50 (22):12512-12520 [DOI: 10.1021/acs.est.6b04303http://dx.doi.org/10.1021/acs.est.6b04303]
Chen Z C, Jacob D J, Nesser H, Sulprizio M P, Lorente A, Varon D J, Lu X, Shen L, Qu Z, Peen E and Yu X Y. 2022. Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics Discussions, 2022:1-31 [DOI: 10.5194/acp-2022-303http://dx.doi.org/10.5194/acp-2022-303]
Carbon Mapper Inc, 2021. Carbon Mapper. https://carbonmapper.org/https://carbonmapper.org/.
Cogliati S, Sarti F, Chiarantini L, Cosi M, Lorusso R, Lopinto E, Miglietta F, Genesio,L, Guanter L, Damm A, Pérez-López S, Scheffler D, Tagliabue G, Panigada C, Rascher U, Dowling T P F, Giardino C and Colombo R. 2021. The PRISMA imaging spectroscopy mission: overview and first performance analysis. Remote Sensing of Environment, 262:112499 [DOI: 10.1016/j.rse.2021.112499http://dx.doi.org/10.1016/j.rse.2021.112499]
Cusworth D H, Duren R M, Thorpe A K, Tseng E, Thompson D, Guha A, Newman S, Foster K T, and Miller C E. 2020. Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environmental Research Letters, 15 (5):054012 [DOI: 10.1088/1748-9326/ab7b99http://dx.doi.org/10.1088/1748-9326/ab7b99]
Cusworth D H, Jacob D J, Varon D J, Chan Miller C, Liu X, Chance K, Thorpe A K, Duren R M, Miller C E, Thompson D R, Frankenberg C, Guanter L and Randles C A. 2019. Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, 12 (10):5655-5668 [DOI: 10.5194/amt-12-5655-2019http://dx.doi.org/10.5194/amt-12-5655-2019]
Colby J D. 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing, 57(5): 531-537
Duren R M, Thorpe A K, Foster K T, Rafiq T, Hopkins F M, Yadav V, Bue B D, Thompson D R, Conley S, Colombi N K, Frankenberg C, McCubbin I B, Eastwood M L, Falk M, Herner J D, Croes B E, Green R O and Miller C E. 2019. California’s methane super-emitters. Nature, 575 (7781):180-184 [DOI: 10.1038/s41586-019-1720-3http://dx.doi.org/10.1038/s41586-019-1720-3]
Environmental Defense Fund, 2021. MethaneSAT. https://www.methanesat.org/https://www.methanesat.org/.
Foote M D, Dennison P E, Thorpe A K, Thompson D R, Jongaramrungruang S, Frankenberg C and Joshi S C. 2020. Fast and Accurate Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior. IEEE Transactions on Geoscience and Remote Sensing, 58 (9):6480-6492 [DOI: 10.1109/tgrs.2020.2976888http://dx.doi.org/10.1109/tgrs.2020.2976888]
Frankenberg C, Thorpe A K, Thompson D R, Hulley G, Kort E A, Vance N, Borchardt J, Krings T, Gerilowski K, Sweeney C, Conley S, Bue B D, Aubrey A D, Hook S and Green R O. 2016. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proceedings of the National Academy of Sciences, 113 (35):9734-9739 [DOI: 10.1073/pnas.1605617113http://dx.doi.org/10.1073/pnas.1605617113]
Frankenberg C, Aben I, Bergamaschi P, Dlugokencky E J, Van Hees R, Houweling S, Van der Meer P, Snel R and Tol P. 2011. Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. Journal of Geophysical Research: Atmospheres, 116 (D4) [DOI: 10.1029/2010JD014849]
Green R O, Mahowald N, Ung C, Thompson D R, Bator L, Bennet M, Bernas M, Blackway N, Bradley C, Cha J, Clark P, Clark R, Cloud D, Diaz E, Ben Dor E, Duren R, Eastwood M Ehlmann B L, Fuentes L, Ginoux P, Gross J, He Y, Kalashnikova O, Kert W, Keymeulen D, Klimesh M, Ku D, Kwong-Fu H, Liggett E, Li L, Lundeen S, Makowski M D, Mazer A, Miller R, Mouroulis P, Oaida B, Okin G S, Ortega A, Oyake A, Nguyen H, Pace T, Painter T H, Pempejian J, Garcia-Pando C P, Pham T, Phillips B, Pollock R, Purcell R, Realmuto V, Schoolcraft J, Sen A, Shin S, Shaw L, Soriano M, Swayze G, Thingvold E, Vaid A and Zan J. 2020. The earth surface mineral dust source investigation: an earth science imaging spectroscopy mission. In: 2020 IEEE Aerospace Conference, pp. 1-15. [DOI: 10.1109/AERO47225.2020.9172731http://dx.doi.org/10.1109/AERO47225.2020.9172731]
Guanter L, Irakulis-Loitxate I, Gorroño J, Sánchez-García E, Cusworth D H, Varon D J, Cogliati S and Colombo R. 2021. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sensing of Environment, 265:112671 [DOI: 10.1016/j.rse.2021.112671http://dx.doi.org/10.1016/j.rse.2021.112671]
Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif,C, Fischer S, Schrader S, Storch T, Heiden U, Mueller A, Bachmann M, Mühle H, Müller R, Habermeyer M, Ohndorf A, Hill J, Buddenbaum H, Hostert P, Van der Linden S, Leitão P, Rabe A, Doerffer R, Krasemann H, Xi H Y, Mauser W, Hank T, Locherer M, Rast M, Staenz K and Sang B. 2015. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sensing, 7 (7):8830-8857 [DOI: 10.3390/rs70708830http://dx.doi.org/10.3390/rs70708830]
Hasekamp O, Lorente A, Hu H, Butz A, de Brugh J and Landgraf J. 2019. Algorithm theoretical baseline document for Sentinel-5 Precursor methane retrieval. Netherlands Institute for Space Research, 67.
Hmiel B, Petrenko V V, Dyonisius M N, Buizert C, Smith A M, Place P F, Harth C, Beaudette R, Hua Q, Yang B, Vimont I, Michel S E, Severinghaus J P, Etheridge D, Bromley T, Schmitt J, Faïn X, Weiss R F and Dlugokencky E. 2020. Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578 (7795):409-412 [DOI: 10.1038/s41586-020-1991-8http://dx.doi.org/10.1038/s41586-020-1991-8]
Huang Y X, Natraj V, Zeng Z C, Kopparla P and Yung Y L. 2020. Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote sensing measurements. Atmospheric Measurement Techniques, 13 (12):6755-6769. [DOI: 10.5194/amt-13-6755-2020http://dx.doi.org/10.5194/amt-13-6755-2020]
Irakulis-Loitxate I, Guanter L, Liu Y N, Varon D J, Maasakkers J D, Zhang Y Z, Chulakadabba A, Wofsy S C, Thorpe A K, Duren R M, Frankenberg C, Lyon D R,. Hmiel B, Cusworth D H, Zhang Y G, Segl K, Gorroño J, Sánchez-García E, Sulprizio M P, Cao K Q, Zhu H J, Liang J, Li X, Aben I and Jacob D J. 2021. Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 7 (27):eabf4507 [DOI: 10.1126/sciadv.abf4507http://dx.doi.org/10.1126/sciadv.abf4507]
Irakulis-Loitxate I, Guanter L, Maasakkers J D, Zavala-Araiza D and Aben I. 2022. Satellites detect abatable super-emissions in one of the world’s largest methane hotspot regions. Environmental Science and Technology, 56 (4):2143-2152 [DOI: 10.1021/acs.est.1c04873http://dx.doi.org/10.1021/acs.est.1c04873]
Jacob D J, Turner A J, Maasakkers J D, Sheng J, Sun K, Liu X, Chance K, Aben I, McKeever J and Frankenberg C. 2016. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 16 (22):14371-14396 [DOI: 10.5194/acp-16-14371-2016http://dx.doi.org/10.5194/acp-16-14371-2016]
Jervis D, McKeever J, Durak B O A, Sloan J J, Gains D, Varon D J, Ramier A, Strupler M and Tarrant E. 2021. The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques, 14 (3):2127-2140 [DOI: 10.5194/amt-14-2127-2021http://dx.doi.org/10.5194/amt-14-2127-2021]
Johan C I K, Eleni M and Chris M. 2021. Global Methane Assessment: Benefits and costs of mitigating methane emissions. In.: Stockholm Environment Institute.
Kuze A, Kikuchi N, Kataoka F, Suto H, Shiomi K and Kondo Y. 2020. Detection of methane emission from a local source using GOSAT target observations. Remote Sensing, 12 (2):267 [DOI: 10.3390/rs12020267http://dx.doi.org/10.3390/rs12020267]
Lin X J, Wen J G, Wu S B, Hao D L, Xiao Q and Liu Q H. 2022. Advances in topographic correction methods for optical remote sensing imageries. Journal of Remote Sensing, 24(08): 958-974
林兴稳, 闻建光, 吴胜标, 郝大磊, 肖青, 柳钦火. 2020. 地表反射率地形校正物理模型与效果评价方法研究进展.遥感学报,24(08):958-974[DOI: 10.11834/jrs.20209167http://dx.doi.org/10.11834/jrs.20209167]
Looney B and Dale S. 2021. BP Statistical Review of World Energy 2021.
Lyon D R., Alvarez R A, Zavala-Araiza D, Brandt A R, Jackson R B and Hamburg S P. 2016. Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites. Environmental Science and Technology, 50 (9):4877-4886 [DOI: 10.1021/acs.est.6b00705http://dx.doi.org/10.1021/acs.est.6b00705]
Lyon D R, Zavala-Araiza D, Alvarez R A, Harriss R, Palacios V, Lan X, Talbot R, Lavoie T, Shepson P, Yacovitch T I, Herndon S C, Marchese A J, Zimmerle D, Robinson A L and Hamburg S P. 2015. Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region. Environmental Science and Technology, 49 (13):8147-8157 [DOI: 10.1021/es506359chttp://dx.doi.org/10.1021/es506359c]
Maasakkers J D, Jacob D J, Sulprizio M P, Scarpelli T R, Nesser H, Sheng J X, Zhang Y, Hersher M, Bloom A A, Bowman K W, Worden J R, Janssens-Maenhout G and Parker R J. 2019. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 19 (11):7859-7881 [DOI: 10.5194/acp-19-7859-2019http://dx.doi.org/10.5194/acp-19-7859-2019]
Miller S M, Michalak A M, Detmers R G, Hasekamp O P, Bruhwiler L M P and Schwietzke S. 2019. China's coal mine methane regulations have not curbed growing emissions. Nature Communications, 10 (1):1-8 [DOI: 10.1038/s41467-018-07891-7http://dx.doi.org/10.1038/s41467-018-07891-7]
Nottrott A, Kleissl J and Keeling R. 2014. Modeling passive scalar dispersion in the atmospheric boundary layer with WRF large-eddy simulation. Atmospheric Environment, 82: 172–182 [DOI: 10.1016/j.atmosenv.2013.10.026http://dx.doi.org/10.1016/j.atmosenv.2013.10.026]
Nunalee C G, Kosović B and Bieringer P E. 2014. Eulerian dispersion modeling with WRF-LES of plume impingement in neutrally and stably stratified turbulent boundary layers. Atmospheric Environment, 99: 571–581 [DOI: 10.1016/j.atmosenv.2014.09.070http://dx.doi.org/10.1016/j.atmosenv.2014.09.070]
Pandey S, Gautam R, Houweling S, Van Der Gon H D, Sadavarte P, Borsdorff T, Hasekamp O, Landgraf J, Tol P, Van K T, Hoogeveen, R, Van H R, Hamburg S P, Maasakkers J D and Aben I. 2019. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proceedings of the National Academy of Sciences, 116 (52):26376-26381 [DOI: 10.1073/pnas.1908712116http://dx.doi.org/10.1073/pnas.1908712116]
Planet, 2022. Planet announces new details of hyperspectral offering. https://www.planet.com/https://www.planet.com/.
Rast M, Nieke J, Adams J, Isola C and Gascon F. 2021. Copernicus Hyperspectral Imaging Mission for the Environment (Chime). In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 108-111 [DOI: 10.1109/IGARSS47720.2021.9553319http://dx.doi.org/10.1109/IGARSS47720.2021.9553319]
Sánchez-García E, Gorroño J, Irakulis-Loitxate I, Varon D J and Guanter L. 2022. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques, 15 (6):1657-1674 [DOI: 10.5194/amt-15-1657-2022http://dx.doi.org/10.5194/amt-15-1657-2022]
Scarpelli T R, Jacob D J, Grossman S, Lu X, Qu Z, Sulprizio M P, Zhang Y, Reuland F, Gordon D and Worden J R. 2022. Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations. Atmospheric Chemistry and Physics, 22 (5):3235-3249 [DOI: 10.5194/acp-22-3235-2022http://dx.doi.org/10.5194/acp-22-3235-2022]
Saunois M, Stavert A R, Poulter B, Bousquet P, Canadell J G, Jackson R B, Raymond P A, Dlugokencky E J, Houweling S, Patra P K, Ciais P, Arora V K, Bastviken D, Bergamaschi P, Blake D R, Brailsford G, Bruhwiler L, Carlson K M, Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill P M, Covey K, Curry C L, Etiope G, Frankenberg C, Gedney N, Hegglin M I, Höglund-Isaksson L, Hugelius G, Ishizawa M, Ito A, Janssens-Maenhout G, Jensen K M, Joos F, Kleinen T, Krummel P B, Langenfelds R L, Laruelle G G, Liu L, Machida T, Maksyutov S, McDonald K C, McNorton J, Miller P A, Melton J R, Morino I, Müller J, Murguia-Flores F, Naik V, Niwa Y, Noce S, O'Doherty S, Parker R J, Peng C, Peng S, Peters G P, Prigent C, Prinn R, Ramonet M, Regnier P, Riley W J, Rosentreter J A, Segers A, Simpson I J, Shi H, Smith S J, Steele L P, Thornton B F, Tian H, Tohjima Y, Tubiello F N, Tsuruta A, Viovy N, Voulgarakis A, Weber T S, van Weele M, Van Der Werf G R, Weiss R F, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W, Zhang Z, Zhao Y, Zheng B, Zhu Q, Zhu Q and Zhuang Q. 2020. The global methane budget 2000–2017. Earth System Science Data, 12 (3):1561-1623 [DOI: 10.5194/essd-12-1561-2020http://dx.doi.org/10.5194/essd-12-1561-2020]
Schneising O, Buchwitz M, Reuter M, Vanselow S, Bovensmann H and Burrows J P. 2020. Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmospheric Chemistry and Physics, 20 (15):9169-9182 [DOI: 10.5194/acp-20-9169-2020http://dx.doi.org/10.5194/acp-20-9169-2020]
Schwietzke S, Sherwood O A, Bruhwiler L M P, Miller J B, Etiope G, Dlugokencky E J, Michel S E, Arling V A, Vaughn B H, White J W C and Tans P P. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature, 538 (7623):88-91 [DOI: 10.1038/nature19797http://dx.doi.org/10.1038/nature19797]
Shindell D, Kuylenstierna J C I, Vignati E, Van Dingenen R, Amann M, Klimont Z, Anenberg S C, Muller N, Janssens-Maenhout G, Raes F, Schwartz J, Faluvegi G, Pozzoli L, Kupiainen K, Höglund-Isaksson L, Emberson L, Streets D, Ramanathan V, Hicks K, Oanh N T K, Milly G, Williams M, Demkine V and Fowler D. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335 (6065):183-189 [DOI: 10.1126/science.1210026http://dx.doi.org/10.1126/science.1210026]
Smith J A, Lin T L and Ranson K J. 1980. The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46(9): 1183-1189 [DOI: 10.1016/0031-0182(80)90065-6http://dx.doi.org/10.1016/0031-0182(80)90065-6]
Thompson D R, Leifer I, Bovensmann H, Eastwood M, Fladeland M, Frankenberg C, Gerilowski K, Green R O, Kratwurst S, Krings T, Luna B and Thorpe A K. 2015. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane. Atmospheric Measurement Techniques, 8 (10):4383-4397 [DOI: 10.5194/amt-8-4383-2015http://dx.doi.org/10.5194/amt-8-4383-2015]
Thompson D R, Thorpe A K, Frankenberg C, Green R O, Duren R, Guanter L, Hollstein A, Middleton E, Ong L and Ungar S. 2016. Space-based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter. Geophysical Research Letters, 43 (12):6571-6578 [DOI: 10.1002/2016GL069079http://dx.doi.org/10.1002/2016GL069079]
Thorpe A K, Duren R M, Conley S, Prasad K R, Bue B D, Yadav V, Foster K T, Rafiq T, Hopkins F M, Smith M L, Fischer M L, Thompson D R, Frankenberg C, McCubbin I B, Eastwood M L, Green R O and Miller C E. 2020. Methane emissions from underground gas storage in California. Environmental Research Letters, 15 (4):045005 [DOI: 10.1088/1748-9326/ab751dhttp://dx.doi.org/10.1088/1748-9326/ab751d]
Varon D J, Jervis D, McKeever J, Spence I, Gains D and Jacob D J. 2021. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmospheric Measurement Techniques, 14 (4):2771-2785 [DOI: 10.5194/amt-14-2771-2021http://dx.doi.org/10.5194/amt-14-2771-2021]
Varon D J, Jacob D J, Jervis D and McKeever J. 2020. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations. Environmental Science and Technology, 54 (16):10246-10253 [DOI: 10.1021/acs.est.0c01213http://dx.doi.org/10.1021/acs.est.0c01213]
Varon D J, Jacob D J, McKeever J, Jervis D, Durak B O A, Xia Y and Huang Y. 2018. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmospheric Measurement Techniques, 11 (10):5673-5686 [DOI: 10.5194/amt-11-5673-2018http://dx.doi.org/10.5194/amt-11-5673-2018]
Wang K, Zhang J J, Cai B F and Liang S. 2021. Estimation of Chinese city-level anthropogenic methane emissions in 2015. Resources, Conservation and Recycling, 175:105861 [DOI: 10.1016/j.resconrec.2021.105861http://dx.doi.org/10.1016/j.resconrec.2021.105861]
Worden J R., Cusworth D H, Qu Z, Yin Y, Zhang Y Z, Bloom A A, Ma S, Byrne B K, Scarpelli T, Maasakkers J D, Crisp D, Duren R and Jacob D J. 2022. The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 22 (10):6811-6841 [DOI: 10.5194/acp-22-6811-2022http://dx.doi.org/10.5194/acp-22-6811-2022]
Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W, Sherlock V and Wennberg P O. 2011. The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369 (1943):2087-2112 [DOI: 10.1098/rsta.2010.0240http://dx.doi.org/10.1098/rsta.2010.0240]
Zavala-Araiza D, Alvarez R A, Lyon D R, Allen D T, Marchese A J, Zimmerle D J and Hamburg S P. 2017. Super-emitters in natural gas infrastructure are caused by abnormal process conditions. Nature Communications, 8(1):1-10 [DOI: 10.1038/ncomms14012http://dx.doi.org/10.1038/ncomms14012]
Zhang Y Z, Gautam R, Pandey S, Omara M, Maasakkers J D, Sadavarte P, Lyon D, Nesser H, Sulprizio M P, Varon D J, Zhang R X, Houweling S, Zavala-Araiza D, Alvarez R A, Lorente A, Hamburg S P, Aben I and Jacob D J. 2020. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 6 (17):eaaz5120 [DOI: 10.1126/sciadv.aaz5120http://dx.doi.org/10.1126/sciadv.aaz5120]
Zhang J X, Han G, Mao H Q, Pei Z P, Ma X, Jia W J and Gong W. 2022. The spatial and temporal distribution patterns of XCH4 in China: new observations from TROPOMI. Atmosphere, 13 (2):177. [DOI: 10.3390/atmos13020177http://dx.doi.org/10.3390/atmos13020177]
相关文章
相关作者
相关机构