Combining multisource satellite data to estimate lake basin bathymetry for seasonal water bodies
- Pages: 1-16(2023)
Published Online: 15 May 2023
DOI: 10.11834/jrs.20232588
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 15 May 2023 ,
扫 描 看 全 文
陈闯,吴桂平,牛汇林,范兴旺,谭志强.XXXX.面向季节性水体的湖盆地形多源遥感协同定量估算研究.遥感学报,XX(XX): 1-16
CHEN Chuang,WU Guiping,NIU Huilin,FAN Xingwang,TAN Zhiqiang. XXXX. Combining multisource satellite data to estimate lake basin bathymetry for seasonal water bodies. National Remote Sensing Bulletin, XX(XX):1-16
季节性水体是地表水的重要组成单元,在调蓄区域洪水、维持生物多样性等方面具有重要作用。如何获取高精度水深信息,是有效支撑季节性水体水储量和碳通量估算的关键,对于深入理解区域水文过程及物质能量平衡等问题具有重要意义。针对季节性水体下垫面条件的复杂性及传统测深技术的局限性,本文基于GEE云平台,联合激光雷达和光学传感器数据,提出了一种面向季节性水体的湖盆地形定量估算方法,并以鄱阳湖典型碟形子湖为研究对象,开展了该方法的精度评价及适用性分析。研究结果表明,以ICESat-2/ATLAS剖面光子高程为基础,协同Sentinel-2获取的淹没频率信息,实现季节性水体湖盆地形“由点及面”的定量估算方法切实可行,估算值和实测值相关性较好,决定系数(R
2
)优于0.7,均方根误差(RMSE)控制在1m内;随着湖泊面积的增大,地形估算的精度总体呈上升趋势,同时受淹没频率范围及光子轨迹分布的影响,不同区域及下垫面条件上的子湖,其估算精度也存在着差异性。本文提出的方法可实现面向季节性水体大范围、低成本、长时序的水下地形定量估算,有望为全球范围内季节性水体水深数据的获取提供新思路。
Seasonal water bodies are an important component of global surface water and play an indispensable role in regional flood storage and local biodiversity maintenance. Obtaining high-precision bathymetric information is the key to effectively supporting the estimation of water storage and carbon flux in seasonal water bodies
which is helpful to understand the regional hydrological processes and material-energy balance
and other issues. On one hand
so far only a few existing studies have focused on seasonal water bodies because of their complex subsurface conditions
particularly small water bodies
which make it even harder to evaluate bathymetry. On the other hand
using traditional bathymetric techniques may encounter great difficulties
where a single sensor is unable to balance cost
efficiency
and accuracy. To this end
this paper proposes a quantitative estimation method of underwater topography for seasonal water bodies
combined with active LiDAR and passive optical sensor data. The LiDAR data is obtained from ICESat-2/ATLAS global geolocated photon data (ATL03) product
which provides high-precision photons vertical profile information of the lake basin. Meanwhile
optical sensor data can be derived from Sentinel-2 MSI datasets based on the Google Earth Engine (GEE) cloud platform
where massive commonly-used datasets can be accessed
and then the regional inundation frequency (IF) distribution will be generated. Each Photon along ICESat-2 ground tracks is time tagged and geolocated
so it is possible to obtain each photon’s height (Hgt) and IF value by geographical intersecting. In the same lake basin
every point’s height and inundation frequency are correlated in theory
so we can build an “Hgt-IF” model to fit this correlation. Then apply this model so that regional IF distribution can be translated into lake-floor elevation over the lake basin. As a typical seasonal lake composed of some dished lakes
Poyang Lake is taken as the research object in this paper and systematical evaluation is performed to evaluate the estimation accuracy and applicability of the method. The results show that the quantitative estimation method is feasible based on the photon elevation of ICESat-2/ATLAS profiles and the inundation frequency information obtained from Sentinel-2 MSI to achieve the “point-to-surface” topography of seasonal water bodies. As for most dished lakes selected
the R square values between the predicted and measured yield are greater than 0.7 and the root mean square errors (RMSEs) are controlled within 1.0 meter. However
we also notice that the simulation accuracy of dished lakes in different areas is also different due to the combined effects of various factors such as lake area
subsurface conditions
inundation frequency range
and photon track distribution. On summary
the method proposed in this paper can realize the quantitative estimation of underwater topography for seasonal water bodies in general terms. Combining active and passive remote sensing data can make up for the shortcomings of a single sensor
especially when it comes to a large scale
low cost
and long time series situation. This method is also expected to provide ideas and directions for the development of bathymetric retrieving models for seasonal water bodies at the global scale.
季节性水体湖盆地形卫星测深ICESat-2Sentinel-2淹没频率
seasonal water bodieslake bathymetrysatellite-based bathymetryICESat-2Sentinel-2inundation frequency
Arce M I, Bengtsson M M, von Schiller D, Zak D, Taumer J, Urich T and Singer G. 2021. Desiccation time and rainfall control gaseous carbon fluxes in an intermittent stream. Biogeochemistry, 155(3): 381-400 [DOI: 10.1007/s10533-021-00831-6http://dx.doi.org/10.1007/s10533-021-00831-6]
Armon M, Dente E, Shmilovitz Y, Mushkin A, Cohen T J, Morin E and Enzel Y. 2020. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophysical Research Letters, 47(7) [DOI: 10.1029/2020GL087367]
Arsen A, Cretaux J F, Berge-Nguyen M and del Rio R A. 2013. Remote sensing-derived bathymetry of Lake Poopo. Remote Sensing, 6(1): 407-420 [DOI: 10.3390/rs6010407http://dx.doi.org/10.3390/rs6010407]
Brunt K M, Neumann T A and Smith B E. 2019. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46(22): 13072-13078 [DOI: 10.1029/2019GL084886http://dx.doi.org/10.1029/2019GL084886]
Campbell A D, Fatoyinbo T, Charles S P, Bourgeau-Chavez L L, Goes J, Gomes H, Halabisky M, Holmquist J, Lohrenz S, Mitchell C, Moskal L M, Poulter B, Qiu H, De Sousa C H R, Sayers M, Simard M, Stewart A J, Singh D, Trettin C, Wu J H, Zhang X S and Lagomasino D. 2022. A review of carbon monitoring in wet carbon systems using remote sensing. Environmental Research Letters, 17(2): 025009 [DOI: 10.1088/1748-9326/ac4d4dhttp://dx.doi.org/10.1088/1748-9326/ac4d4d]
Cao B C. 2017. A study of remotely-sensed data processing in bathymetry. Henan: Information Engineering University: 11-32
曹彬才. 遥感测深数据处理方法研究.河南: 战略支援部队信息工程大学: 11-32
Cao B C, Fang Y, Jiang Z Z, Gao L and Hu H Y. 2020. Implementation and accuracy evaluation of ICESat-2 ATL08 denoising algorithms. Bulletin of Surveying and Mapping, (5):25-30
曹彬才,方勇,江振治,高力,胡海彦.2020.ICESat-2 ATL08去噪算法实现及精度评价.测绘通报,(5):25-30 [DOI:10.13474/j.cnki.11-2246.2020.0139http://dx.doi.org/10.13474/j.cnki.11-2246.2020.0139]
Chen B and Zhao M. 2020. Intermittent inland waters as important carbon source. Chinese Science Bulletin, 65(16): 1581-1591
陈波,赵敏.2020.间歇性内陆水域是重要的碳源.科学通报,65(16):1581-1591[DOI: 10.1360/TB-2019-0868http://dx.doi.org/10.1360/TB-2019-0868]
Chen T, Song C, Ke L, Wang J, Liu K, and Wu Q. 2021a. Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 593: 125781 [DOI: 10.1016/j.jhydrol.2020.125781http://dx.doi.org/10.1016/j.jhydrol.2020.125781]
Chen Y F, Le Y, Zhang D F, Wang Y, Qiu Z G and Wang L Z. 2021b. A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering. Remote Sensing of Environment, 256: 112326 [DOI: 10.1016/j.rse.2021.112326http://dx.doi.org/10.1016/j.rse.2021.112326]
Cohen S, Brakenridge G R, Kettner A, Bates B, Nelson J, McDonald R, Huang Y F, Munasinghe D and Zhang J Q. 2018. Estimating floodwater depths from flood inundation maps and topography. JAWRA Journal of the American Water Resources Association, 54(4): 847-858 [DOI: 10.1111/1752-1688.12609http://dx.doi.org/10.1111/1752-1688.12609]
Downing J A, Prairie Y T, Cole J J, Duarte C M, Tranvik L J, Striegl R G, McDowell W H, Kortelainen L J, Caraco N F, Melack J M and Middelburg J J. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5): 2388-2397 [DOI: 10.4319/lo.2006.51.5.2388http://dx.doi.org/10.4319/lo.2006.51.5.2388]
Easter M, Kriegel H P, Sander J and Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park AAAI Press, 226–231
Feng L, Hu C M, Chen X L, Li R F, Tian L Q and Murch B. 2011. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake. Remote Sensing of Environment, 115(10): 2729-2741 [DOI: 10.1016/j.rse.2011.06.013http://dx.doi.org/10.1016/j.rse.2011.06.013]
Gao J. 2009. Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1): 103-116 [DOI: 10.1177/0309133309105657http://dx.doi.org/10.1177/0309133309105657]
Getirana A, Jung H C and Tseng K H. 2018. Deriving three dimensional reservoir bathymetry from multi-satellite datasets. Remote sensing of environment, 217: 366-374 [DOI: 10.1016/j.rse.2018.08.030http://dx.doi.org/10.1016/j.rse.2018.08.030]
Gorelick N , Hancher M , Dixon M , Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Hodul M, Bird S, Knudby A and Chenier R. 2018. Satellite derived photogrammetric bathymetry. ISPRS Journal of Photogrammetry and Remote Sensing, 142: 268-277 [DOI: 10.1016/j.isprsjprs.2018.06.015http://dx.doi.org/10.1016/j.isprsjprs.2018.06.015]
Holgerson M A and Raymond P A. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3): 222-U150 [DOI: 10.1038/NGEO2654http://dx.doi.org/10.1038/NGEO2654]
Hondula K L, Jones C N and Palmer M A. 2021. Effects of seasonal inundation on methane fluxes from forested freshwater wetlands. Environmental Research Letters, 16(8): 084016 [DOI: 10.1088/1748-9326/ac1193http://dx.doi.org/10.1088/1748-9326/ac1193]
Hu Z P, Ge G, Liu C L, Chen F S and Li S. 2010. Structure of poyang lake wetland plants ecosystem andinfluence of lake water level for the structure. Resources and Environment in the Yangtze Basin, 19(6):597
胡振鹏,葛刚,刘成林,陈伏生,李述.2010.鄱阳湖湿地植物生态系统结构及湖水位对其影响研究.长江流域资源与环境,19(6):597
Huang C C,Yao L,Li J S,Zhou C H,Guo Y L and Li Y M. 2022. Remote sensing technology in the study of lake carbon cycle: Opportunities and challenges. National Remote Sensing Bulletin,26(1): 49-67
黄昌春,姚凌,李俊生,周成虎,郭宇龙,李云梅. 2022. 湖泊碳循环研究中遥感技术的机遇与挑战. 遥感学报,2022,26(01):49-67 [DOI: 10.11834/jrs.20221220http://dx.doi.org/10.11834/jrs.20221220]
Jawak S D, Vadlamani S S and Luis A J. 2015. A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons. Advances in remote Sensing, 4(02), 147-162 [DOI: 10.4236/ars.2015.42013http://dx.doi.org/10.4236/ars.2015.42013]
Kalinin A, Covino T and McGlynn B. 2016. The influence of an in-network lake on the timing, form, and magnitude of downstream dissolved organic carbon and nutrient flux. Water Resources Research, 52(11), 8668-8684 [DOI: 10.1002/2016WR019378http://dx.doi.org/10.1002/2016WR019378]
Khazaei B, Read L K, Casali M, Sampson K M and Yates D N. 2022. GLOBathy, the global lakes bathymetry dataset. Scientific Data, 9(1): 1-10 [DOI: 10.1038/s41597-022-01132-9http://dx.doi.org/10.1038/s41597-022-01132-9]
Li Y, Gao H L, Jasinski M F, Zhang S and Stoll J D. 2019. Deriving High-Resolution Reservoir Bathymetry From ICESat-2 Prototype Photon-Counting Lidar and Landsat Imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7883-7893 [DOI: 10.1109/TGRS.2019.2917012http://dx.doi.org/10.1109/TGRS.2019.2917012]
Li Y, Gao H, Zhao G and Tseng K H. 2020. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry. Remote Sensing of Environment, 244: 111831 [DOI: 10.1016/j.rse.2020.111831http://dx.doi.org/10.1016/j.rse.2020.111831]
Li Y J, Zhou X Q, Li G Y, Gou J Q, Ma Y and Chen Y F. 2022. Progress and Prospect of Space-borne Photon-counting Lidar Shallow Water Bathymetry Technology. Infrared and Laser Engineering, 1-13[2022-03-11]. https://kns.cnki.net/kcms/detail/12.1261.TN.20220310.1926.005.html ( (https://kns.cnki.net/kcms/detail/12.1261.TN.20220310.1926.005.html((
李雨佳,周晓青,李国元,郭金权,马跃,谌一夫.2022.星载单光子激光雷达浅水测深技术研究进展和展望.红外与激光工程))
Liu X G, Tan Z Q and Fan H X. 2021. Seasonal distribution of sub-lakes on tail-streams of Ganjiang River. Yangtze River, 52(5):7
刘星根,谭志强,范宏翔.2021.赣江尾闾碟形湖水体季节性分布特征.人民长江, 52(5):7 [DOI: 10.16232/j.cnki.1001-4179.2021.05.011http://dx.doi.org/10.16232/j.cnki.1001-4179.2021.05.011]
Liu Y B, Wu G P, Ke C Q. 2016. Hydrological Remote Sensing. Beijing: Science Press.
刘元波, 吴桂平, 柯长青等. 2016. 水文遥感. 北京:科学出版社
Ma Y, Xu N, Liu Z, Yang B S, Yang F L, Wang X H and Li S. 2020. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sensing of Environment, 250: 112047 [DOI: 10.1016/j.rse.2020.112047http://dx.doi.org/10.1016/j.rse.2020.112047]
Melack J M and Forsberg B R. 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. The Biogeochemistry of the Amazon Basin; New York, USA: Oxford University Press, 235-274 [DOI: 10.1093/oso/9780195114317.003.0017http://dx.doi.org/10.1093/oso/9780195114317.003.0017]
Messager M L, Lehner B, Cockburn C, Lamouroux N, Pella H, Snelder T, Tockner K, Trautmann T, Watt C and Datry T. 2021. Global prevalence of non-perennial rivers and streams. Nature, 594(7863): 391-397 [DOI: 10.1038/s41586-021-03565-5http://dx.doi.org/10.1038/s41586-021-03565-5]
Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1):62-66 [DOI: 10.1109/TSMC.1979.4310076http://dx.doi.org/10.1109/TSMC.1979.4310076]
Papa F and Frappart F. 2021. Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences. Remote Sensing, 13(20): 4162 [DOI: 10.3390/rs13204162http://dx.doi.org/10.3390/rs13204162]
Rajib A, Golden H E, Lane C R and Wu Q. 2020. Surface depression and wetland water storage improves major river basin hydrologic predictions. Water resources research, 56(7): e2019WR026561 [DOI: 10.1029/2019WR026561http://dx.doi.org/10.1029/2019WR026561]
Salameh E, Frappart F, Almar R, Baptista P, Heygster G, Lubac B, Raucoules D, Almeida L P, Bergsma E W J, Capo S, De Michele M, Idier D, Li Z, Marieu V, Poupardin A, Silva P A, Turki I and Laignel B. 2019. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: A review. Remote Sensing, 11(19): 2212 [DOI: 10.3390/rs11192212http://dx.doi.org/10.3390/rs11192212]
Saunois M, Stavert A R, Poulter B, Bousquet P, Canadell J G, Jackson R B, Raymond P A, Dlugokencky E J, Houweling S, ... and Zhuang Q. 2020. The global methane budget 2000–2017. Earth system science data, 12(3): 1561-1623 [DOI: 10.5194/essd-12-1561-2020http://dx.doi.org/10.5194/essd-12-1561-2020]
Serrano O, Lavery P S, Rozaimi M and Mateo M A. 2014. Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemical Cycles, 28(9): 950-961 [DOI: 10.1002/2014GB004872http://dx.doi.org/10.1002/2014GB004872]
Shan J, Tian X X, Li S and Li R F. 2022. Anvances of spaceborne laser altimetry technology. Acta Geodaetica et Cartographica Sinica, 51(06): 964-982
单杰,田祥希,李爽,李韧菲.2022.星载激光测高技术进展.测绘学报, 51(06):964-982 [DOI: 10.11947/j.AGCS.2022.20221074http://dx.doi.org/10.11947/j.AGCS.2022.20221074]
Shen F, Gao A, Wu J P, Zhou Y X and Zhang J. 2008. A remotely sensed approach on waterline extraction of silty tidal flat for DEM construction, a case study in Jiuduansha Shoal of Yangtze River. Acta Geodaetica et Cartographica Sinica, (01): 102-107
沈芳,郜昂,吴建平,周云轩,张杰.2008.淤泥质潮滩水边线提取的遥感研究及DEM构建——以长江口九段沙为例[J].测绘学报,(01):102-107 [DOI: 10.3321/j.issn:1001-1595.2008.01.018http://dx.doi.org/10.3321/j.issn:1001-1595.2008.01.018]
Shook K, Papalexiou S and Pomeroy J W. 2021. Quantifying the effects of Prairie depressional storage complexes on drainage basin connectivity. Journal of Hydrology, 593: 125846 [DOI: 10.1016/j.jhydrol.2020.125846http://dx.doi.org/10.1016/j.jhydrol.2020.125846]
Smith B, Fricker H A, Gardner A S, ... and Zwally H J. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368(6496): 1239-1242 [DOI: 10.1126/science.aaz5845http://dx.doi.org/10.1126/science.aaz5845]
Tortini R, Noujdina N, Yeo S, Ricko M, Birkett C M, MEaSURE A, Kumar V, Marlier M E and Lettenmaier D P. 2020. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth System Science Data, 12(2): 1141-1151 [DOI: 10.5194/essd-12-1141-2020http://dx.doi.org/10.5194/essd-12-1141-2020]
Wang C, Zhu X X, Nie S and Chen S C. 2019. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA.Optics Express, 27(26): 38168-38179 [DOI: 10.1364/OE.27.038168http://dx.doi.org/10.1364/OE.27.038168]
Wang C K and Philpot W D. 2007. Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sensing of Environment, 106(1), 123-135 [DOI: 10.1016/j.rse.2006.08.003http://dx.doi.org/10.1016/j.rse.2006.08.003]
Wu G P and Liu Y B. 2015. Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake. Journal of Hydrology, 523: 14-23 [DOI: 10.1016/j.jhydrol.2015.01.048http://dx.doi.org/10.1016/j.jhydrol.2015.01.048]
Wu G P and Liu Y B. 2017. Seasonal water exchanges between China’s Poyang Lake and its saucer-shaped depressions on river deltas. Water, 9(11): 884 [DOI: 10.3390/w9110884http://dx.doi.org/10.3390/w9110884]
Wu G P, Xiao X M and Liu Y B. 2022. Satellite-Based Surface Water Storage Estimation: Its History, Current Status, and Future Prospects. IEEE Geoscience and Remote Sensing Magazine, 6(2): 2-23[DOI: 110.1109/MGRS.2022.3175159http://dx.doi.org/110.1109/MGRS.2022.3175159]
Wu Q and Lane C R. 2016. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. Wetlands, 36(2), 215-227 [DOI: 10.1007/s13157-015-0731-6http://dx.doi.org/10.1007/s13157-015-0731-6]
Xie D P, Li G Y, Wang J M, Gou J Q, Me J Q and Yang C. 2020. An Overview of the Application Prospect of New Laser Altimetry Satellite ICESat-2 in Geoscience. Geomatics & Spatial Information Technology, 43(12): 38-42+45
谢栋平,李国元,王建敏,郭金权,么嘉棋,杨超.2020.新型激光测高卫星ICESat-2在地学中的应用前景综述.测绘与空间地理信息,43(12):38-42+45
Xu H Q. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing, 9(5): 589-595
徐涵秋.2005.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,9(5):589-595 [DOI: 10.3321/j.issn:1007-4619.2005.05.012http://dx.doi.org/10.3321/j.issn:1007-4619.2005.05.012]
Xu J X. 2000. A preliminary study of man-induced seasonal rivers: examples from China. Geographical Research, (03):234-242
许炯心.2000.人为季节性河流的初步研究.地理研究, (03):234-242
Zeng L and Chu X. 2021. Integrating depression storages and their spatial distribution in watershed-scale hydrologic modeling. Advances in Water Resources, 151: 103911 [DOI: 10.1016/j.advwatres.2021.103911http://dx.doi.org/10.1016/j.advwatres.2021.103911]
Zhang G, Chen W and Xie H. 2019. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46(22): 13107-13118 [DOI: 10.1029/2019GL085032http://dx.doi.org/10.1029/2019GL085032]
相关文章
相关作者
相关机构