Spatio-temporal land use/cover change dynamics in Hangzhou Bay, China, using long-term Landsat time series and GEE platform
- Vol. 27, Issue 6, Pages: 1480-1495(2023)
Published: 07 June 2023
DOI: 10.11834/jrs.20232614
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 June 2023 ,
扫 描 看 全 文
梁锦涛,陈超,孙伟伟,杨刚,刘志松,张自力.2023.长时序Landsat和GEE云平台的杭州湾土地利用/覆被变化时空格局演变.遥感学报,27(6): 1480-1495
Liang J T,Chen C,Sun W W,Yang G,Liu Z S and Zhang Z L. 2023. Spatio-temporal land use/cover change dynamics in Hangzhou Bay, China, using long-term Landsat time series and GEE platform. National Remote Sensing Bulletin, 27(6):1480-1495
海湾处于水陆交互的区域,生态系统较为脆弱,资源环境极易受损。大尺度、长时序和高精度的土地利用/覆被变化LUCC(Land Use/Cover Change)制图是海湾区域国土空间规划和环境保护的基础。现有的制图方法多是针对原始遥感影像,难以充分挖掘和联合利用特征空间和变换空间蕴含的信息潜力,导致传统方法在地表异质性较高的海湾区域应用效果较差。本文面向杭州湾区域,基于Landsat长时间序列卫星影像和谷歌地球引擎GEE(Google Earth Engine),提出了融合遥感指数和主成分分量的随机森林遥感影像分类方法,实现了1985年—2020年(5年时间间隔)的LUCC制图及时空格局分析。结果表明:(1)融合遥感指数和主成分分量的随机森林算法能够准确提取杭州湾LUCC信息,8个时相的平均总体精度OA(Overall Accuracy)和Kappa系数分别为92.83%和0.9108。(2)研究期间内,建设用地(278.26 km
2
至2984.76 km
2
,年均增加77.33 km
2
)、水体(509.32 km
2
至680.21 km
2
,年均增加4.88 km
2
)、裸地(768.99 km
2
增长至1078.13 km
2
,年均增加8.83 km
2
)的面积呈现增加趋势,而林地(2159.49 km
2
至1881.52 km
2
,年均减少7.94 km
2
)、耕地(6998.45 km
2
至4800.59 km
2
,年均减少62.80 km
2
)、滩涂(181.65 km
2
至161.50 km
2
,年均减少0.58 km
2
)的面积呈现减少趋势。(3)研究期间内,耕地是最主要的转出源,总面积占比由64.23%减少至41.43%,耕地面积转出以建设用地(2268.05 km
2
)与裸地(630.20 km
2
)为主;耕地面积转入以水体(376.22 km
2
)与林地(352.22 km
2
)为主。本研究能够为杭州湾区域土地资源的科学管理提供数据支持,所得LUCC数据集对区域可持续发展具有重要意义。
Land Use/Cover Change (LUCC) is generally defined as the use of land by humans
which is the direct result of the interaction between humans and nature
and reflects the basic process of the interaction between the Earth’s environmental system and human production systems. A bay is an area where land and water interact
with a relatively fragile ecosystem and easily damaged resources and environment. Large-scale long-time series and high-precision LUCC mapping is the basis for territorial spatial planning and environmental protection in bay regions. Random forest algorithms received considerable attention in recent years owing to their high interpretability and reliability in handling complex data. However
room for improvement exists in optimizing the performance of random forest algorithms in processing long-time series datasets. Most existing mapping methods are aimed at original remote sensing images
and fully tapping and jointly utilizing the information potential of the feature space and transformation space are difficult
resulting in the poor application effect of traditional methods in bay areas with high surface heterogeneity. The combined application of the remote sensing spectral index can effectively increase the separability of object categories in bay areas
and principal component transformation can effectively eliminate correlations between features and achieve data compression and image enhancement. Based on Landsat long-term satellite and Google Earth Engine images of the Hangzhou Bay area
this study proposes a random forest remote sensing image classification method that integrates the remote sensing spectral index and principal component transformation and analyzes LUCC mapping spatiotemporal patterns from 1985 to 2020 (at 5-year intervals). Results show that (1) the random forest algorithm
integrating the remote sensing spectral index and principal component transformation
can accurately extract Hangzhou Bay LUCC information
and the average overall accuracy and kappa coefficient of the eight time phases are 92.83% and 0.9108
respectively. (2) During the study period
the construction land area (278.26 km
2
to 2984.76 km
2
with an average annual increase of 77.33 km
2
)
water area (509.32 km
2
to 680.21 km
2
with an average annual increase of 4.88 km
2
)
and bare land area (768.99 km
2
to 1078.13 km
2
with an average annual increase of 8.83 km
2
) showed an increasing trend
whereas the wood land area (2159.49 km
2
to 1881.52 km
2
with an annual average decrease of 7.94 km
2
)
cultivated field area (6998.45 km
2
to 4800.59 km
2
with an annual average decrease of 62.80 km
2
)
and tidal-flat area (181.65 km
2
to 161.50 km
2
with an annual average decrease of 0.58 km
2
) showed a decreasing trend. (3) During the study period
the cultivated field area was the main transfer source
whose total area proportion decreased from 64.23% to 41.43%. The transfer out of the cultivated field area was mainly to construction land (2268.05 km
2
) and bare land (630.20 km
2
)
and the transfer in of the cultivated field area was mainly to water body (376.22 km
2
) and forest land (352.22 km
2
). This study provides data support for the scientific management of land resources in the Hangzhou Bay
and the obtained LUCC dataset is of considerable significance to the sustainable development of the region.
杭州湾土地利用/覆被变化谷歌地球引擎(GEE)Landsat时空特征
Hangzhou Bayland use/cover changeGoogle Earth EngineLandsatspatio-temporal characteristics
Abdi H and Williams L J. 2010. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4): 433-459 [DOI: 10.1002/wics.101http://dx.doi.org/10.1002/wics.101]
Akar Ö and Güngör O. 2012. Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2): 105-112 [DOI: 10.9733/jgg.241212.1http://dx.doi.org/10.9733/jgg.241212.1]
Bangira T, Alfieri S M, Menenti M and Van Niekerk A. 2019. Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sensing, 11(11): 1351 [DOI: 10.3390/rs11111351http://dx.doi.org/10.3390/rs11111351]
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32 [DOI: 10.1023/a:1010933404324http://dx.doi.org/10.1023/a:1010933404324]
Chan J C W and Paelinckx D. 2008. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112(6): 2999-3011 [DOI: 10.1016/j.rse.2008.02.011http://dx.doi.org/10.1016/j.rse.2008.02.011]
Chen C, Chen H X, Chen D, Zhang Z L, Zhang X F, Zhuang Y, Zhu Y L, Chen J Y and Zheng H. 2021. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands. Remote Sensing for Land and Resources, 33(2): 141-152
陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 2021. 舟山群岛海岸线遥感信息提取及时空演变分析. 国土资源遥感, 33(2): 141-152 [DOI: 10.6046/gtzyyg.2020248http://dx.doi.org/10.6046/gtzyyg.2020248]
Chen C, Fu J Q, Sui X X, Lu X and Tan A H. 2018. Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images. Journal of Remote Sensing, 22(5): 792-801
陈超, 傅姣琪, 随欣欣, 鲁旭, 谭安辉. 2018. 面向灾后水体遥感信息提取的知识决策树构建及应用. 遥感学报, 22(5): 792-801 [DOI: 10.11834/jrs.20188044http://dx.doi.org/10.11834/jrs.20188044]
Chen G, Zhong C R, Li M Y, Yu Z, Liu X Y and Jia M M. 2022. Disturbance of mangrove forests in Guangxi Beilun Estuary during 1990-2020. Journal of Remote Sensing, 26(6): 1112-1120
陈高, 钟才荣, 李明玉, 余洲, 刘心雨, 贾明明. 2022. 1990年—2020年广西北仑河口红树林扰动研究. 遥感学报, 26(6): 1112-1120 [DOI: 10.11834/jrs.20221579http://dx.doi.org/10.11834/jrs.20221579]
Chen H X, Chen C, Zhang Z L, Wang L Y and Liang J T. 2022. A remote sensing information extraction method for intertidal zones based on Google Earth Engine. Remote Sensing for Natural Resources, 34(4): 60-67
陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 2022. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法. 自然资源遥感, 34(4): 60-67 [DOI: 10.6046/zrzyyg.2022308http://dx.doi.org/10.6046/zrzyyg.2022308]
Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, Peng S, Han G, Zhang H W, He C Y, Wu H and Lu M. 2014. Concepts and key techniques for 30 m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 43(6): 551-557
陈军, 陈晋, 廖安平, 曹鑫, 陈利军, 陈学泓, 彭舒, 韩刚, 张宏伟, 何超英, 武昊, 陆苗. 2014. 全球30 m地表覆盖遥感制图的总体技术. 测绘学报, 43(6): 551-557
Chen Q, Mao Y and Morrison A M. 2021. The influence of land use evolution on the visitor economy in Wuhan from the perspective of ecological service value. Land, 11(1): 1 [DOI: 10.3390/land11010001http://dx.doi.org/10.3390/land11010001]
Cheng L N, Zhong C R, Li X Y, Jia M M, Wang Z M and Mao D H. 2022. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine. National Remote Sensing Bulletin, 26(2): 348-357
程丽娜, 钟才荣, 李晓燕, 贾明明, 王宗明, 毛德华. 2022. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类. 遥感学报, 26(2): 348-357 [DOI: 10.11834/jrs.20211311http://dx.doi.org/10.11834/jrs.20211311]
Cutler D R, Edwards T C, Beard K H, Cutler A, Hess K T, Gibson J and Lawler J J. 2007. Random forests for classification in ecology. Ecology, 88(11): 2783-2792 [DOI: 10.1890/07-0539.1http://dx.doi.org/10.1890/07-0539.1]
Ghorbanian A, Kakooei M, Amani M, Mahdavi S, Mohammadzadeh A and Hasanlou M. 2020. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 276-288 [DOI: 10.1016/j.isprsjprs.2020.07.013http://dx.doi.org/10.1016/j.isprsjprs.2020.07.013]
Jia M M, Wang Z M, Mao D H, Huang C L and Lu C Y. 2021. Spatial-temporal changes of China’s mangrove forests over the past 50 years: an analysis towards the Sustainable Development Goals (SDGs). Chinese Science Bulletin, 66(30): 3886-3901
贾明明, 王宗明, 毛德华, 黄春林, 路春燕. 2021. 面向可持续发展目标的中国红树林近50年变化分析. 科学通报, 66(30): 3886-3901 [DOI: 10.1360/TB-2020-1412http://dx.doi.org/10.1360/TB-2020-1412]
Khwarahm N R, Qader S, Ararat K and Fadhil Al-Quraishi A M. 2021. Predicting and mapping land cover/land use changes in Erbil/Iraq using CA-Markov synergy model. Earth Science Informatics, 14(1): 393-406 [DOI: 10.1007/s12145-020-00541-xhttp://dx.doi.org/10.1007/s12145-020-00541-x]
Kiggundu N, Anaba L A, Banadda N, Wanyama J and Kabenge I. 2018. Assessing land use and land cover changes in the Murchison Bay catchment of Lake Victoria basin in Uganda. Journal of Sustainable Development, 11(1): 44 [DOI: 10.5539/jsd.v11n1p44http://dx.doi.org/10.5539/jsd.v11n1p44]
Li D Q, Lu D S, Wu M, Shao X X and Wei J H. 2017. Examining land cover and greenness dynamics in Hangzhou Bay in 1985-2016 using Landsat time-series data. Remote Sensing, 10(2): 32 [DOI: 10.3390/rs10010032http://dx.doi.org/10.3390/rs10010032]
Li J L and Wang L J. 2020. Spatial and temporal evolutions of the major bays in the East China Sea under the influence of reclamation. Acta Geographica Sinica, 75(1): 126-142
李加林, 王丽佳. 2020. 围填海影响下东海区主要海湾形态时空演变. 地理学报, 75(1): 126-142 [DOI: 10.11821/dlxb202001010http://dx.doi.org/10.11821/dlxb202001010]
Li N, Lu D S, Wu M, Zhang Y L and Lu L Y. 2018. Coastal wetland classification with multiseasonal high-spatial resolution satellite imagery. International Journal of Remote Sensing, 39(23): 8963-8983 [DOI: 10.1080/01431161.2018.1500731http://dx.doi.org/10.1080/01431161.2018.1500731]
Li Q Q, Lu Y, Hu S B, Hu Z W, Li H Z, Liu P, Shi T Z, Wang C S, Wang J J and Wu G F. 2016. Review of remotely sensed geo-environmental monitoring of coastal zones. Journal of Remote Sensing, 20(5): 1216-1229
李清泉, 卢艺, 胡水波, 胡忠文, 李洪忠, 刘鹏, 石铁柱, 汪驰升, 王俊杰, 邬国锋. 2016. 海岸带地理环境遥感监测综述. 遥感学报, 20(5): 1216-1229 [DOI: 10.11834/jrs.20166168http://dx.doi.org/10.11834/jrs.20166168]
Liu X P, Liang X, Li X, Xu X C, Ou J P, Chen Y M, Li S Y, Wang S J and Pei F S. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94-116 [DOI: 10.1016/j.landurbplan.2017.09.019http://dx.doi.org/10.1016/j.landurbplan.2017.09.019]
Luo J C, Hu X D, Wu T J, Liu W, Xia L G, Yang H P, Sun Y W, Xu N, Zhang X, Shen Z F and Zhou N. 2021. Research on intelligent calculation model and method of precision land use/cover change information driven by high-resolution remote sensing. National Remote Sensing Bulletin, 25(7): 1351-1373
骆剑承, 胡晓东, 吴田军, 刘巍, 夏列钢, 杨海平, 孙营伟, 徐楠, 张新, 沈占锋, 周楠. 2021. 高分遥感驱动的精准土地利用与土地覆盖变化信息智能计算模型与方法研究. 遥感学报, 25(7): 1351-1373 [DOI: 10.11834/jrs.20219402http://dx.doi.org/10.11834/jrs.20219402]
Lyons M B, Phinn S R and Roelfsema C M. 2012. Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS Journal of Photogrammetry and Remote Sensing, 71: 34-46 [DOI: 10.1016/j.isprsjprs.2012.05.002http://dx.doi.org/10.1016/j.isprsjprs.2012.05.002]
Mateo-García G, Gómez-Chova L, Amorós-López J, Muñoz-Marí J and Camps-Valls G. 2018. Multitemporal cloud masking in the Google Earth Engine. Remote Sensing, 10(7): 1079 [DOI: 10.3390/rs10071079http://dx.doi.org/10.3390/rs10071079]
Ning X G, Chang W T, Wang H, Zhang H C and Zhu Q D. 2022. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. National Remote Sensing Bulletin, 26(2): 386-396
宁晓刚, 常文涛, 王浩, 张翰超, 朱乾德. 2022. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取. 遥感学报, 26(2): 386-396 [DOI: 10.11834/jrs.20200033http://dx.doi.org/10.11834/jrs.20200033]
Peng J T, Sun W W, Wei T H and Fan W Q. 2020. A modified correlation alignment algorithm for the domain adaptation of GF-5 hyperspectral image. Journal of Remote Sensing, 24(4): 417-426
彭江涛, 孙伟伟, 魏天慧, 范文琦. 2020. 高分五号高光谱影像的关联对齐域适应与分类. 遥感学报, 24(4): 417-426 [DOI: 10.11834/jrs.20209212http://dx.doi.org/10.11834/jrs.20209212]
Rawat J S and Kumar M. 2015. Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1): 77-84 [DOI: 10.1016/j.ejrs.2015.02.002http://dx.doi.org/10.1016/j.ejrs.2015.02.002]
Regasa M S, Nones M and Adeba D. 2021. A review on land use and land cover change in Ethiopian basins. Land, 10(6): 585 [DOI: 10.3390/land10060585http://dx.doi.org/10.3390/land10060585]
Rodrigues S W P and Souza-Filho P W M. 2011. Use of multi-sensor data to identify and map tropical coastal wetlands in the Amazon of Northern Brazil. Wetlands, 31(1): 11-23 [DOI: 10.1007/s13157-010-0135-6http://dx.doi.org/10.1007/s13157-010-0135-6]
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China’s earth observation remote sensing satellites. Journal of Remote Sensing, 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Sun W W, Zhang D F, Yang G and Li W Y. 2018. Band selection for hyperspectral imagery based on weighted probabilistic archetypal analysis. Journal of Remote Sensing, 22(1): 110-118
孙伟伟, 张殿发, 杨刚, 李巍岳. 2018. 加权概率原型分析的高光谱影像波段选择. 遥感学报, 22(1): 110-118 [DOI: 10.11834/jrs.20186446http://dx.doi.org/10.11834/jrs.20186446]
Sun Z, Luo J H, Yang J Z C, Yu Q Y, Zhang L, Xue K and Lu L R. 2020. Nation-scale mapping of coastal aquaculture ponds with sentinel-1 SAR data using Google Earth Engine. Remote Sensing, 12(18): 3086 [DOI: 10.3390/rs12183086http://dx.doi.org/10.3390/rs12183086]
Teluguntla P, Thenkabail P S, Oliphant A, Xiong J, Gumma M K, Congalton R G, Yadav K and Huete A. 2018. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 325-340 [DOI: 10.1016/j.isprsjprs.2018.07.017http://dx.doi.org/10.1016/j.isprsjprs.2018.07.017]
Tian P, Li J L, Cao L D, Pu R L, Gong H B, Liu Y C, Zhang H T and Chen H L. 2021. Impacts of reclamation derived land use changes on ecosystem services in a typical gulf of eastern China: a case study of Hangzhou bay. Ecological Indicators, 132: 108259 [DOI: 10.1016/j.ecolind.2021.108259http://dx.doi.org/10.1016/j.ecolind.2021.108259]
Tu C R, Li P, Li Z H, Wang H J, Yin S W, Li D H, Zhu Q T, Chang M X, Liu J and Wang G Y. 2021. Synergetic classification of coastal wetlands over the Yellow River Delta with GF-3 full-polarization SAR and Zhuhai-1 OHS hyperspectral remote sensing. Remote Sensing, 13(21): 4444 [DOI: 10.3390/rs13214444http://dx.doi.org/10.3390/rs13214444]
Wang C, Jia M M, Chen N C and Wang W. 2018. Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: a case study in the middle Yangtze River Basin. Remote Sensing, 10(10): 1635 [DOI: 10.3390/rs10101635http://dx.doi.org/10.3390/rs10101635]
Wang X, Liu Y L, Ling F, Liu Y F and Fang F G. 2017. Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976-2015. ISPRS International Journal of Geo-Information, 6(3): 68 [DOI: 10.3390/ijgi6030068http://dx.doi.org/10.3390/ijgi6030068]
Wingate V R, Phinn S R, Kuhn N, Bloemertz L and Dhanjal-Adams K L. 2016. Mapping decadal land cover changes in the woodlands of north eastern Namibia from 1975 to 2014 using the Landsat satellite archived data. Remote Sensing, 8(8): 681 [DOI: 10.3390/rs8080681http://dx.doi.org/10.3390/rs8080681]
Wu Y Q and Liu Z L. 2019. Research progress on methods of automatic coastline extraction based on remote sensing images. Journal of Remote Sensing, 23(4): 582-602
吴一全, 刘忠林. 2019. 遥感影像的海岸线自动提取方法研究进展. 遥感学报, 23(4): 582-602 [DOI: 10.11834/jrs.20197410http://dx.doi.org/10.11834/jrs.20197410]
Zhao Y H, An R, Xiong N X, Ou D Y and Jiang C F. 2021. Spatio-temporal land-use/land-cover change dynamics in coastal plains in Hangzhou Bay Area, China from 2009 to 2020 using Google Earth Engine. Land, 10(11): 1149 [DOI: 10.3390/land10111149http://dx.doi.org/10.3390/land10111149]
Zurqani H A, Post C J, Mikhailova E A, Schlautman M A and Sharp J L. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 69: 175-185 [DOI: 10.1016/j.jag.2017.12.006http://dx.doi.org/10.1016/j.jag.2017.12.006]
相关文章
相关作者
相关机构