Bibliometrics spatial-temporal evolution analysis of the development of remote sensing
- Vol. 27, Issue 11, Pages: 2449-2466(2023)
Published: 07 November 2023
DOI: 10.11834/jrs.20232659
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 November 2023 ,
扫 描 看 全 文
黄铭瑞,简洪登,徐琛,郝俊生,闫珺,刘良云,范湘涛,郭华东.2023.基于文献计量的遥感学科发展趋势分析.遥感学报,27(11): 2449-2466
Huang M R,Jian H D,Xu C,Hao J S,Yan J,Liu L Y,Fan X T and Guo H D. 2023. Bibliometrics spatial-temporal evolution analysis of the development of remote sensing. National Remote Sensing Bulletin, 27(11):2449-2466
遥感已成为支撑国家资源能源调查、粮食安全监测、生态环境保护、自然灾害评估、国防安全等的重要信息源。利用文献计量学方法定量分析遥感相关文献所承载知识的时空分布、数量关系和变化规律,梳理并提取遥感学科发展趋势及研究热点的时空演化特征,可为遥感学科的建设与发展提供重要科学支撑。对1962年—2021年间发表并被SCI数据库收录的遥感相关文章进行文献计量研究,对比分析了国内外典型遥感卫星的文献发表及应用情况,系统剖析了1962年—2021年美国、欧洲、中国遥感研究热点及其变化过程,总结了美国、欧洲、中国学者在合成孔径雷达(SAR)、高光谱(Hyperspectral)及激光雷达(LiDAR)3大遥感前沿技术的研究特点。结果表明:(1)遥感学科SCI文章数自1998年起呈现快速增长、加速增长的趋势。1962年—2012年全球累积发表遥感相关SCI文章69666篇,2013年—2021年全球累积发文100131篇。2014年,中国(第一作者)年度发表遥感相关SCI文章2048篇,首次超过美国(第一作者)年度1454篇跃居全球第一,此后一直领先。2021年,中国(第一作者)年度发表遥感相关SCI文章8063篇,占全球该年度遥感相关SCI文章19121篇的42.17%;(2)在遥感技术方面,卫星遥感平台从单一卫星向专业小卫星、卫星星座方向发展;卫星传感器从全色、单波段起步,逐步向SAR、高光谱、LiDAR等前沿技术快速发展;(3)在遥感数据应用方面,Landsat、MODIS、Sentinel等国外数据自出现以来就一直被全球用户广泛使用,尤其是中国学者的遥感应用研究高度依赖这些国外卫星数据,近年来国产卫星的应用呈快速发展趋势;(4)当前中外遥感科学研究热点差异显著:美国遥感学者依托Landsat、MODIS、激光雷达等先进卫星和载荷技术,遥感已广泛深入各应用领域;欧洲遥感学者十分重视Sentinel系列卫星的科学研究和应用;中国遥感研究在所有领域和卫星应用方面都表现了突出的数量优势,且中国遥感学者更关注SAR、高光谱、LiDAR以及深度学习、神经网络、特征提取等前沿技术与算法研究。
Remote Sensing (RS) has become an essential information source for national resource and energy surveys
food security monitoring
ecological environmental protection
natural disaster assessment
and national defense security. Bibliometric is a helpful method to analyze the development dynamics
hotspots
and evolution in the RS discipline. It is a powerful approach to sort out and visualize the progress of RS development.
This study conducts a bibliometric analysis of RS-related Science Citation Index (SCI) papers published from 1962 to 2021. The research hotspots and changes of RS in the United States
Europe
and China from 1962 to 2021 are systematically determined. The application of typical RS satellites globally and in China are compared and analyzed. The research characteristics of US
European
and Chinese scholars in the three frontier technologies (i.e.
Synthetic Aperture Radar
Hyperspectral
and LiDAR) are summarized.
Results show that (1) the number of SCI papers and authors in RS has shown a trend of rapid growth and accelerated growth since 1998
from 69
666 published in 2012 to 169
797 in 2021. China has surpassed the US in its annual publication to become the first since 2014
and it has been far ahead since then. It published 8
063 RS SCI papers by 2021
which accounted for 42.17% of the 19
121 global publications. (2) In terms of RS technology
RS started from multispectral imaging
and it developed rapidly to the frontier technologies of synthetic aperture radar
hyperspectral
LiDAR
unmanned aerial vehicle (UAV)
high-resolution image
and deep learning. Furthermore
RS gradually played an increasingly important role in many application fields. (3) In terms of RS data application
Landsat
MODIS
Sentinel
and other foreign data have been widely used by global users. Chinese scholars highly rely on these foreign satellite data to conduct RS research. By contrast
the application of domestic satellites is relatively rare
and the international influence of domestic satellites is very weak
which is very mismatched with China’s status of RS. (4) Significant differences are observed in the hotspots of RS research between China and other countries. By relying on advanced satellite and payload technologies (e.g.
Landsat and MODIS)
the US developed science- and demand-driven RS research
which has been widely used in various application fields. European RS scholars attached great importance to the research and application of Sentinel satellites
which have surpassed Landsat in the number of SCI papers they published. Chinese RS has shown outstanding quantitative advantages in all research fields and applications. Meanwhile
Chinese RS scholars pay more attention to synthetic aperture radar
hyperspectral
LiDAR
deep learning
neural networks
feature extraction
and other cutting-edge technologies and algorithms.
遥感文献计量学科发展趋势研究热点卫星数据应用领域
remote sensingbibliometricsdiscipline development trendsresearch hotspotsatellite dataapplication fields
CBAS. 2021. SDGSAT[EB/OL]. [2023-02-06]. http://www.cbas.ac.cn/en/resources/sdgsat/http://www.cbas.ac.cn/en/resources/sdgsat/
CBAS官网. 2021. 可持续发展科学卫星[EB/OL]. [2023-02-06]. http://www.cbas.ac.cn/en/resources/sdgsat/http://www.cbas.ac.cn/en/resources/sdgsat/
Chen C M, Ibekwe-SanJuan F and Hou J H. 2010. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7): 1386-1409 [DOI: 10.1002/asi.21309http://dx.doi.org/10.1002/asi.21309]
Chen C M and Song M. 2019. Visualizing a field of research: a methodology of systematic scientometric reviews. PLoS One, 14(10): e0223994 [DOI: 10.1371/journal.pone.0223994http://dx.doi.org/10.1371/journal.pone.0223994]
Chen L F, Yan J, Fan W J, Xin X Z, Zhao T J, Chen F, Wu C Y and Fan M. 2016. Twentieth anniversary of the Journal of Remote Sensing. Journal of Remote Sensing, 20(5): 794-806
陈良富, 闫珺, 范闻捷, 辛晓洲, 赵天杰, 陈方, 吴朝阳, 范萌. 2016. 《遥感学报》20年: 从热点到前沿. 遥感学报, 20(5): 794-806 [DOI: 10.11834/jrs.20166230http://dx.doi.org/10.11834/jrs.20166230]
Chen W and Chen W. 2022. The identification and evolution of research frontiers from comparison of science and technology. Journal of Intelligence, 41(1): 67-73, 163
陈稳, 陈伟. 2022. 科学与技术对比视角下的前沿主题识别与演化分析. 情报杂志, 41(1): 67-73, 163 [DOI: 10.3969/j.issn.1002-1965.2022.01.011http://dx.doi.org/10.3969/j.issn.1002-1965.2022.01.011]
Ebrahim S A, Poshtan J, Jamali S M and Ebrahim N A. 2020. Quantitative and qualitative analysis of time-series classification using deep learning. IEEE Access, 8: 90202-90215 [DOI: 10.1109/ACCESS.2020.2993538http://dx.doi.org/10.1109/ACCESS.2020.2993538]
Feng Y and Zheng J W. 2005. An analysis of status and trends of the international remote sensing science on bibliometrics. Remote Sensing Technology And Application, 20(5): 526-530
冯筠, 郑军卫. 2005. 基于文献计量学的国际遥感学科发展态势分析. 遥感技术与应用, 20(5): 526-530 [DOI: 10.3969/j.issn.1004-0323.2005.05.014http://dx.doi.org/10.3969/j.issn.1004-0323.2005.05.014]
García-Mora T J, Mas J F and Hinkley E A. 2012. Land cover mapping applications with MODIS: a literature review. International Journal of Digital Earth, 5(1): 63-87 [DOI: 10.1080/17538947.2011.565080http://dx.doi.org/10.1080/17538947.2011.565080]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27 [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Guo H D. 2001. Earth Observation Technology and Sustainable Development. Beijing: Science Press
郭华东. 2001. 对地观测技术与可持续发展. 北京: 科学出版社
Guo H D. 2014. Scientific Satellites for Global Change Research. Beijing: Science Press
郭华东. 2014. 全球变化科学卫星. 北京: 科学出版社
Guo H D. 2016. Earth system observation from space: from scientific satellite to Moon-based platform. Journal of Remote Sensing, 20(5): 716-723
郭华东. 2016. 地球系统空间观测: 从科学卫星到月基平台. 遥感学报, 20(5): 716-723 [DOI: 10.11834/jrs.20166266http://dx.doi.org/10.11834/jrs.20166266]
Guo H D. 2021. Listen to Academician Guo Huadong talk on Remote sensing Episode 3(6): What are the three frontier technologies of remote sensing. [2022-12-30]. https://www.douyin.com/video/6921658998689139975 (https://www.douyin.com/video/6921658998689139975(
郭华东. 2021. 听郭华东院士讲遥感第3集(6)遥感三大前沿技术都有啥?https://www.douyin.com/video/6921658998689139975) [2022-12-30]
Guo H D and Zhang L. 2019. 60 years of radar remote sensing: four-stage development. Journal of Remote Sensing, 23(6): 1023-1035
郭华东, 张露. 2019. 雷达遥感六十年: 四个阶段的发展. 遥感学报, 23(6): 1023-1035 [DOI: 10.11834/jrs.20199398http://dx.doi.org/10.11834/jrs.20199398]
Huang M R, Fan X T, Jian H D, Zhang H Y, Guo L Y and Di L P. 2022. Bibliometric analysis of OGC specifications between 1994 and 2020 based on web of science (WoS). ISPRS International Journal of Geo-Information, 11(4): 251 [DOI: 10.3390/ijgi11040251http://dx.doi.org/10.3390/ijgi11040251]
Huang M R, Li G Q, Li J and Fan X T. 2019. International comparative study on management mode of national science data center. Journal of Agricultural Big Data, 1(4): 14-29
黄铭瑞, 李国庆, 李静, 范湘涛. 2019. 国家科学数据中心管理模式的国际对比研究. 农业大数据学报, 1(4): 14-29 [DOI: 10.19788/j.issn.2096-6369.190402http://dx.doi.org/10.19788/j.issn.2096-6369.190402]
Kahraman S and Bacher R. 2021. A comprehensive review of hyperspectral data fusion with lidar and SAR data. Annual Reviews in Control, 51: 236-253 [DOI: 10.1016/j.arcontrol.2021.03.003http://dx.doi.org/10.1016/j.arcontrol.2021.03.003]
Li J F, Wang M H and Ho Y S. 2011. Trends in research on global climate change: a science citation index expanded-based analysis. Global and Planetary Change, 77(1/2): 13-20 [DOI: 10.1016/j.gloplacha.2011.02.005http://dx.doi.org/10.1016/j.gloplacha.2011.02.005]
Liu L Y, Chen L F, Liu Y, Yang D X, Zhang X Y, Lu N M, Ju W M, Jiang F, Yin Z S, Liu G H, Tian L F, Hu D H, Mao H Q, Liu S H, Zhang J H, Lei L P, Fan M, Zhang Y C, Zhou X and Wu Y R. 2022. Satellite remote sensing for global stocktaking: methods, progress and perspectives. National Remote Sensing Bulletin, 26(2): 243-267
刘良云, 陈良富, 刘毅, 杨东旭, 张兴嬴, 卢乃锰, 居为民, 江飞, 尹增山, 刘国华, 田龙飞, 胡登辉, 毛慧琴, 刘思含, 张建辉, 雷莉萍, 范萌, 张雨琮, 周翔, 吴一戎. 2022. 全球碳盘点卫星遥感监测方法、进展与挑战. 遥感学报, 26(2): 243-267 [DOI: 10.11834/jrs.20221806http://dx.doi.org/10.11834/jrs.20221806]
Liu W H, Zheng J W, Wang Z R, Li R and Wu T H. 2021. A bibliometric review of ecological research on the Qinghai-Tibet Plateau, 1990-2019. Ecological Informatics, 64: 101337 [DOI: 10.1016/j.ecoinf.2021.101337http://dx.doi.org/10.1016/j.ecoinf.2021.101337]
Ma Z B, Xiao W F, Huang Q L and Zhuang C Y. 2017. A review of point pattern analysis in ecology and its application in China. Acta Ecologica Sinica, 37(19): 6624-6632
马志波, 肖文发, 黄清麟, 庄崇洋. 2017. 生态学中的点格局研究概况及其在国内的应用. 生态学报, 37(19): 6624-6632 [DOI: 10.5846/stxb201607081399http://dx.doi.org/10.5846/stxb201607081399]
Peng Y L, Lin A W, Wang K, Liu F L, Zeng F and Yang L. 2015. Global trends in DEM-related research from 1994 to 2013: a bibliometric analysis. Scientometrics, 105(1): 347-366 [DOI: 10.1007/s11192-015-1666-7http://dx.doi.org/10.1007/s11192-015-1666-7]
Phiri D, Simwanda M, Salekin S, Nyirenda V R, Murayama Y and Ranagalage M. 2020. Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, 12(14): 2291 [DOI: 10.3390/rs12142291http://dx.doi.org/10.3390/rs12142291]
Qiu J P. 2019. Bibliometrics. 2nd ed. Beijing: Science Press
邱均平. 2019. 文献计量学.2版. 北京: 科学出版社
Townshend J. 2001. Landsat imagery in geography//Smelser N J and Baltes P B, eds. International Encyclopedia of the Social & Behavioral Sciences. Oxford: Pergamon: 8265-8270 [DOI: 10.1016/B0-08-043076-7/02527-4http://dx.doi.org/10.1016/B0-08-043076-7/02527-4]
Wang J R, Wang S Q, Zou D X, Chen H M, Zhong R, Li H L, Zhou W and Yan K. 2021. Social network and bibliometric analysis of unmanned aerial vehicle remote sensing applications from 2010 to 2021. Remote Sensing, 13(15): 2912 [DOI: 10.3390/rs13152912http://dx.doi.org/10.3390/rs13152912]
Wang Q. 2018. A bibliometric model for identifying emerging research topics. Journal of the Association for Information Science and Technology, 69(2): 290-304 [DOI: 10.1002/asi.23930http://dx.doi.org/10.1002/asi.23930]
Wulder M A, Loveland T R, Roy D P, Crawford C J, Masek J G, Woodcock C E, Allen R G, Anderson M C, Belward A S, Cohen W B, Dwyer J, Erb A, Gao F, Griffiths P, Helder D, Hermosilla T, Hipple J D, Hostert P, Hughes M J, Huntington J, Johnson D M, Kennedy R, Kilic A, Li Z, Lymburner L, McCorkel J, Pahlevan N, Scambos T A, Schaaf C, Schott J R, Sheng Y W, Storey J, Vermote E, Vogelmann J, White J C, Wynne R H and Zhu Z. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225: 127-147 [DOI: 10.1016/j.rse.2019.02.015http://dx.doi.org/10.1016/j.rse.2019.02.015]
Xu C, Du X P, Fan X T, Giuliani G, Hu Z Y, Wang W, Liu J, Wang T, Yan Z Z, Zhu J J, Jiang T Y and Guo H D. 2022. Cloud-based storage and computing for remote sensing big data: a technical review. International Journal of Digital Earth, 15(1): 1417-1445 [DOI: 10.1080/17538947.2022.2115567http://dx.doi.org/10.1080/17538947.2022.2115567]
Xu N, Guo X D, Hong Y T, Zhang C and Dong H. 2008. Study on land degradation assessment indicators based on literature analysis. Scientia Geographica Sinica, 28(3): 425-430
许宁, 郭旭东, 洪友堂, 张聪, 董华. 2008. 基于文献分析的土地退化评价指标研究. 地理科学, 28(3): 425-430 [DOI: 10.3969/j.issn.1000-0690.2008.03.022http://dx.doi.org/10.3969/j.issn.1000-0690.2008.03.022]
Yan K, Zou D X, Yan G J, Fang H L, Weiss M, Rautiainen M, Knyazikhin Y and Myneni R B. 2021. A bibliometric visualization review of the MODIS LAI/FPAR products from 1995 to 2020. Journal of Remote Sensing, 2021: 7410921 [DOI: 10.34133/2021/7410921http://dx.doi.org/10.34133/2021/7410921]
Yang D, Yang X C, Jin Y X and Xu B. 2021. Evaluating the research status quo around remote sensing-mediated monitoring of grassland biomass based on bibliometrology. Pratacultural Science, 38(9): 1782-1792
杨东, 杨秀春, 金云翔, 徐斌. 2021. 基于文献计量的草地生物量遥感监测研究进展. 草业科学, 38(9): 1782-1792 [DOI: 10.11829/j.issn.1001-0629.2021-0167http://dx.doi.org/10.11829/j.issn.1001-0629.2021-0167]
Zeng Y, Zhang J X and Niu R C. 2015. Research status and development trend of remote sensing in China using bibliometric analysis//The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. Kona: [s.n.]: 203-208 [DOI: 10.5194/isprsarchives-XL-7-W4-203-2015http://dx.doi.org/10.5194/isprsarchives-XL-7-W4-203-2015]
Zhang B. 2017. Current status and future prospects of remote sensing. Bulletin of Chinese Academy of Sciences, 32(7): 774-784
张兵. 2017. 当代遥感科技发展的现状与未来展望. 中国科学院院刊, 32(7): 774-784 [DOI: 10.16418/j.issn.1000-3045.2017.07.012http://dx.doi.org/10.16418/j.issn.1000-3045.2017.07.012]
Zhang H Y, Huang M R, Qing X L, Li G Q and Tian C Z. 2017. Bibliometric analysis of global remote sensing research during 2010-2015. ISPRS International Journal of Geo-Information, 6(11): 332 [DOI: 10.3390/ijgi6110332http://dx.doi.org/10.3390/ijgi6110332]
Zhang Y L, Yao X L and Qin B Q. 2016. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environmental Science and Pollution Research, 23(13): 12811-12821 [DOI: 10.1007/s11356-016-6856-1http://dx.doi.org/10.1007/s11356-016-6856-1]
Zhang Y T, Wang Y and Song X L. 2015. Comparison between the science developments of remote sensing satellite based on bibliometrics. Proceedings of the 10th China Soft Science Annual Conference. Beijing: China Soft Science Research Society. 2015: 269-279.
张熠天, 王宇, 宋小龙. 2015. 基于文献计量的中外遥感卫星科学发展比较分析. 第十届中国软科学学术年会论文集. 北京: 中国软科学研究会. 2015: 269-279
Zhao J D, An P J and Zhang Z Q. 2010. Bibliometrical analysis for space observations of global change research. Remote Sensing Technology and Application, 25(5): 753-760
赵纪东, 安培浚, 张志强. 2010. 全球变化空间观测研究的文献计量分析. 遥感技术与应用, 25(5): 753-760
Zhao Q, Yu L, Du Z R, Peng D L, Hao P Y, Zhang Y G and Gong P. 2022. An overview of the applications of earth observation satellite data: impacts and future trends. Remote Sensing, 14(8): 1863 [DOI: 10.3390/rs14081863http://dx.doi.org/10.3390/rs14081863]
Zheng R B, Lu R K, Tang X L, Li S, Zhang Y Q and Huang T. 2017. Researches progress and hotspots analysis of global LUCC research during 1998 to 2016. Journal of Huaqiao University (Natural Science), 38(5): 591-601
郑荣宝, 卢润开, 唐晓莲, 李爽, 张雅琪, 黄婷. 2017. 1998-2016年全球LUCC研究进展与热点分析. 华侨大学学报(自然科学版), 38(5): 591-601 [DOI: 10.11830/issn.1000-5013.201706068http://dx.doi.org/10.11830/issn.1000-5013.201706068]
相关文章
相关作者
相关机构