Automatic Extraction of High-Voltage Transmission Pylons with Multi Feature Constraints
- Pages: 1-12(2023)
Published Online: 10 April 2023
DOI: 10.11834/jrs.20232684
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 10 April 2023 ,
扫 描 看 全 文
王濮,王成,习晓环,聂胜,杜蒙.XXXX.多特征约束的输电通道杆塔点云提取研究.遥感学报,XX(XX): 1-12
WANG Pu,WANG Cheng,XI Xiaohuan,NIE Sheng,DU Meng. XXXX. Automatic Extraction of High-Voltage Transmission Pylons with Multi Feature Constraints. National Remote Sensing Bulletin, XX(XX):1-12
杆塔自动识别是机载LiDAR(Light Detection and Ranging)电力巡检应用的重要内容,特别是长距离、规模化应用时,高效高精度的杆塔点云提取尤为重要。针对复杂地形环境下输电通道杆塔点云快速精准识别难的问题,本文提出了一种基于多特征约束的杆塔点云自动提取方法。首先,基于输电通道地物空间分布特点,设计了离地高度、垂直最大间隙等特征;其次,对输电通道机载LiDAR点云进行去噪、滤波等一系列预处理;然后,对非地面点云进行网格化,基于离地高差、线性度等多特征约束快速定位杆塔区域,并利用分层密度法和杆塔塔体结构对称性提取杆塔中心坐标;最后,对杆塔区域点云垂直分层切片,逐层剔除非杆塔点云。采用三种不同场景的机载点云数据进行算法验证,结果表明本文所提方法可从原始点云中快速自动提取杆塔点,其中查准率、召回率、F1值可达0.916、0.960、0.935,杆塔定位精度保持在分米级甚至厘米级。
Objective The pylon is an important component of the transmission line and its identification based on airborne light detection and ranging (LiDAR) is crucial to power inspection. The efficient and high-precision extraction of pylon point clouds is important
especially in long-distance and large-scale applications
and is also conducive to massive data organization
parallel processing
and quantitative applications. The existing pylon extraction methods usually require balanced and tremendous amount of training samples or lack sufficient terrain adaptability. Furthermore
these methods are vulnerable to the high height objects such as trees and buildings in the complex terrain environment of the mountainous areas. Method This study proposed a method of automatic pylon extraction based on the multi-feature constraints. First
the height above the ground and the maximum vertical gap are designed based on the spatial distribution of objects in the transmission corridor point clouds. Second
a series of preprocessing such as denoising and filtering are performed on airborne LiDAR point clouds. Third
the pylon regions are quickly located based on multi-feature constraints such as height difference and linearity
and the pylon center coordinates are calculated by using the layered density method and pylon structural symmetry. Finally
the point clouds of pylon regions are vertically sliced along the Z axis
and the non-pylon point clouds are eliminated layer by layer using the gap between the interference and the pylon vertical slicing. Result Airborne LiDAR point clouds in three different scenarios are utilized to evaluating the performance of the proposed method. The root mean square error (RMSE) of the pylon center coordinates are 0.04m
0.40m and 0.13m
respectively. The precision
recall and F1-value of the pylon extraction can reach up to 0.916
0.960 and 0.935
respectively. Compared with other pylon extraction methods
the qualitative analysis results show that the proposed method performs better in pylon area recognition
positioning error and pylon point cloud extraction. Meanwhile
the proposed method successfully extracts pylons from variable terrain point clouds. Conclusion The aforementioned experimental results show that the proposed method can effectively extract pylons with high accuracy and strong terrain adaptability. In addition
the method does not need to train samples and take into account class-imbalance problems. And the proposed method can provide auxiliary information for post-processing such as scene classification
line hanging point extraction
etc.
and promote the application of airborne LiDAR for power inspection.
机载LiDAR点云多特征约束输电通道垂直分层切片杆塔自动提取
Airborne LiDARMulti-feature constraintTransmission corridorVertical slicingAutomatic extraction of pylons
Awrangjeb M, Islam M K. 2017. Classifier-free detection of power line pylons from point cloud data[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4: 81. [DOI: 10.5194/isprs-annals-IV-4-W4-81-2017http://dx.doi.org/10.5194/isprs-annals-IV-4-W4-81-2017]
Awrangjeb M. 2019. Extraction of power line pylons and wires using airborne LiDAR data at different height levels[J]. Remote Sensing, 11(15): 1798. [DOI: 10.3390/rs11151798http://dx.doi.org/10.3390/rs11151798]
Chen S C, Wang C, Dai H Y, et al. 2019. Power pylon reconstruction based on abstract template structures using airborne LiDAR data[J]. Remote Sensing. 2019, 11(13):1579. [DOI: 10.3390/rs11131579http://dx.doi.org/10.3390/rs11131579]
Guo B, Huang X F, Zhang F, et al. 2015. Classification of airborne laser scanning data using JointBoost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 100: 71–83. [DOI: 10.1016/j.isprsjprs.2014.04.015http://dx.doi.org/10.1016/j.isprsjprs.2014.04.015]
Guo T,Shen P,Shi L, et al. 2018. Study on power tower extraction and fast positioning from airborne LiDAR data. Remote Sensing Technology and Application, 2018, 33(3): 530-535
虢韬, 沈平, 时磊, 等. 2018. 机载LiDAR快速定位高压电塔方法研究[J]. 遥感技术与应用, 33(3): 530-535. [DOI: 10.11873/j.issn.1004-0323.2018.3.0530http://dx.doi.org/10.11873/j.issn.1004-0323.2018.3.0530]
Hackel T, Wegner J D, Schindler K. 2016. Contour detection in unstructured 3D point clouds[C]. IEEE Conference on Computer Vision and Pattern Recognition, 1610-1618. [DOI: 10.1109/CVPR.2016.178http://dx.doi.org/10.1109/CVPR.2016.178]
Kim H B, Sohn G. 2013. Point-based classification of power line corridor scene using random forests[J]. Photogrammetric Engineering and Remote Sensing, 79(9): 821-833. [DOI: 10.14358/PERS.79.9.821http://dx.doi.org/10.14358/PERS.79.9.821]
Lai X D, Dai D C, Zheng M, et al. 2014. Powerline three-dimensional reconstruction for Li DAR point cloud data[J]. Journal of Remote Sensing, 18(6):1223-1229
赖旭东, 戴大昌, 郑敏, 等. 2014. LiDAR点云数据的电力线3维重建[J]. 遥感学报, 18(6):1223-1229 [DOI: 10.11834/jrs.20144075http://dx.doi.org/10.11834/jrs.20144075]
Li W, Luo Z P, Xiao Z L, et al. 2021. A GCN-based method for extracting power lines and pylons from airborne LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-14. [DOI: 10.1109/TGRS.2021.3076107http://dx.doi.org/10.1109/TGRS.2021.3076107]
Liu Z J, Liang J, Zhang J X. 2014. Power lines extraction from airborne LiDAR data using spatial domain segmentation[J]. Journal of Remote Sensing, 18(1):61-76
刘正军, 梁静, 张继贤. 2014. 空间域分割的机载LiDAR数据输电线快速提取[J]. 遥感学报, 18(01):61-76 [DOI: 10.11834/jrs.20132231http://dx.doi.org/10.11834/jrs.20132231]
Ma W F, Wang C, Wang J L, et al. 2020. Extraction of power lines from laser point cloud based on residual clustering method[J]. Acta Geodaetica et Cartographica Sinica, 49(7): 883-892
麻卫峰, 王成, 王金亮, 等. 2020. 激光点云输电线精细提取的残差聚类法[J]. 测绘学报, 49(7): 883-892 [DOI: 10.11947/j.AGCS.2020.20190373http://dx.doi.org/10.11947/j.AGCS.2020.20190373]
Nardinocchi C, Balsi M, Esposito S. 2020. Fully automatic point cloud analysis for powerline corridor mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 58(12): 8637-8648. [DOI: 10.1109/TGRS.2020.2989470http://dx.doi.org/10.1109/TGRS.2020.2989470]
Peng S W, Xi X H, Wang C, et al. 2020. Point-based multilevel domain adaptation for point cloud segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. [DOI: 10.1109/LGRS.2020.3037702http://dx.doi.org/10.1109/LGRS.2020.3037702]
Qiao Y Y, Xi X H, Nie S, et al. 2022. Power pylon reconstruction from airborne LiDAR data based on component segmentation and model matching[J]. Remote Sensing, 14(19): 4905. [DOI: 10.3390/rs14194905http://dx.doi.org/10.3390/rs14194905]
Wang H P, Chen S C, Hu W, et al. 2021. Study on power pylon fast positioning in transmission line from airborne LiDAR data[J]. Remote Sensing Technology and Application, 36(6): 1306-1310
王和平, 陈世超, 胡伟, 等. 2021. 机载LiDAR输电线路杆塔快速定位方法研究[J]. 遥感技术与应用, 36(6): 1306-1310 [DOI: 10.11873/j.issn.1004-0323.2021.6.1306http://dx.doi.org/10.11873/j.issn.1004-0323.2021.6.1306]
Wang J R, Wang C, Xi X H, et al. 2022. Location and extraction of telegraph poles from image matching-based point clouds[J]. Remote Sensing, 14(3): 433. [DOI: 10.3390/rs14030433http://dx.doi.org/10.3390/rs14030433]
Wang Y J, Chen Q, Liu L, et al. 2017. Supervised classification of power lines from airborne LiDAR data in urban areas[J]. Remote Sensing, 9(8): 771. [DOI: 10.3390/rs9080771http://dx.doi.org/10.3390/rs9080771]
Yang B S, Liang F X, Huang R G. 2017. Progress, Challenges and Perspectives of 3D LiDAR Point Cloud Processing[J]. Acta Geodaetica et Cartographica Sinica, 46(10):1509-1516
杨必胜, 梁福逊, 黄荣刚.2017. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 46(10):1509-1516 [DOI: 10.11947/j.AGCS.2017.20170351http://dx.doi.org/10.11947/j.AGCS.2017.20170351]
Zhang W M, Qi J B, Wan P, et al. 2016. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote sensing, 8(6): 501. [DOI: 10.3390/rs8060501http://dx.doi.org/10.3390/rs8060501]
相关文章
相关作者
相关机构