The Cognitive Logic and Map Construction Model of Machine Maps
- Pages: 1-13(2023)
DOI: 10.11834/jrs.20233066
扫 描 看 全 文
扫 描 看 全 文
JIA Fenli, YANG Jian, YOU Xiong, et al. The Cognitive Logic and Map Construction Model of Machine Maps. [J/OL]. National Remote Sensing Bulletin 1-13(2023)
机器地图是为提升无人平台复杂环境认知与理解能力而提出的一类新型地图。本文以机器地图的概念模型为基础,从认知科学视角提出一种以记忆结构与过程为参考、符合认知逻辑的机器地图建图理论模型。通过分析记忆的结构与过程、心象地图的内容与组织,认知架构和机器人系统中的环境认知等问题,梳理出机器地图的认知逻辑及其对机器地图建图模型的支撑。在此基础上,分析了机器地图的任务目标和内容分类,从信息组织、逻辑结构与生成过程三方面提出机器地图建图模型的设计原则。基于该原则,设计了机器地图建图的逻辑结构和过程模型。在逻辑结构方面,从空间、视觉、情境、图式、规则等方面细化了感知地图、工作地图和长时地图中的内容与结构关系;在过程模型方面,按照认知活动抽象出包括理解、注意、推理、学习、行动的机器地图建图基本活动,并提出内隐和外显两类建图过程。机器地图的认知逻辑与建图模型,本质上是对机器地图认知计算机制的阐释,从抽象层次上为研究人员提供协同研究的基础框架,也为相关技术、数据的集成、评估、运用提供参考。本文的研究还为数字孪生或虚拟地理环境的构建提出新的目标与要求。
Unmanned platforms are rapidly being used in many different fields. However, improving their cognition and understanding of complex environments remains a challenging research problem. Machine maps are a new class of maps proposed to address this problem. Based on the conceptual model of the machine map, this paper adopts the research perspective of cognitive science and further proposes a theoretical model of the machine map's map construction, which is cognitive-plausible and consistent with the cognitive structure. This paper first discusses the theoretical roots of machine maps in cognitive science in terms of the origin, formation, and development of machine maps. Second, we briefly review the research on the structure and generation of memory models, mental image maps, cognitive architectures, and environmental cognition issues of robotic systems. Furthermore, we discuss the cognitive structure of the machine map and its supporting role in the map construction model of machine maps. Third, we propose the design principles of the machine map's map construction model, which includes the organization of environment information using distributed representations, structural design of the machine map using a multi-store memory system, and modeling of the generation of the machine map with a reference of brain cognitive activities. Furthermore, the task objectives, content classification, detailed logical structure, and map generation process of the machine map's map construction are presented. In particular, the perceptual map conducts preliminary processing of information acquired by sensors to obtain information about the features, location, geometry, and semantics of entities in the surrounding environment; the working map is functionally similar to working memory in human brains, which contains visual information, spatial information, situational information, and specialized maps constructed to accomplish specific tasks; the long-time map uses perceptual map and working map as information sources, and the fragmented information in the perceptual map and working map is associated, managed, and processed more extensively to form an environment model with global reference. Finally, machine map generation's primary activities (e.g., understanding, attention, inference, learning, and action) and processes(e.g., implicit map generation and explicit map generation)are discussed based on the logical structure. The implicit map generation refers to the process in which the content and the knowledge in the long-term map are continuously enriched and accumulated through the continuous evolution and support of the perceptual map and the working map during the operation of the unmanned platform. This process contains three activities: shallow understanding, deep understanding, and implicit learning. Explicit map generation refers to the process in which the working map will form a specialized map for a given task to meet the specific task requirements and support the generation of spatial behavior under the support of itself, perceptual map, and long-term map. The process consists of six activities: superficial understanding, inference, attention, deep understanding, episodic learning, and action. The cognitive structure and map construction model, which is an interpretation of the machine map cognitive computing system, can serve as a basic framework for researchers that are interested in the machine map, allowing them to carry out collaborative research at a more abstract level and also provide references for the integration, evaluation, and application of related technologies and data. This research also illuminates new requirements and goals for constructing digital twin or virtual geographic environments.
机器地图认知逻辑建图模型无人平台
machine mapcognitive logicmap construction modelunmanned platform
Albus J S. 1991. Outline for a Theory of Intelligence. IEEE Transactions On Systems, Man, And Cybernetics, 21(3)
Albus J S. 2010. Reverse Engineering The Brain. International Journal of Machine Consciousness. 2,(2): 193-211
Anderson J, Bothell D, Byrne M, Scott D, Christian L, and Qin Y L. 2004. An Integrated Theory of the Mind. Psychological review. 111: 1036-1060 [DOI:10.1037/0033-295X.111.4.1036http://dx.doi.org/10.1037/0033-295X.111.4.1036.]
Atkinson R C, Shiffrin R M. 1968. Human Memory: A Proposed System and its Control Processes. Psychology of Learning & Motivation, 2:89-195
BaddeIey A D, Hitch G. 1974. Working memory. Psychology of Learning and Motivation, 8: 47-89
Bao X H. Promotion effect of visual long-term memory on visual short-term memory[D]. Xi’an: Shanxi Normal University,2014
鲍旭辉.视觉长时记忆对视觉短时记忆的促进作用[D].西安:陕西师范大学, 2014
Barbara T. 2019. Cognitive maps, cognitive collages, and spatial mental models. In book: Mental Mapping. The Science of Orientation. New Approaches to Location - Spatial Patterns of the Global Economy Conference. Budapest, 5–7 November: 11-22
Behrens T, Muller T, Whittington J, Mark S, Baram A, Stachenfeld K, Kurth-Nelson Z. 2018. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior.Neuron 100(2):490-509
Boeing. Meet Echo Seeker-Boeing's newest unmanned underwater vehicle goes deep, goes long[N/OL]. July 14, 2015.[2023-2-1] https://www.boeing.com/ features/2015/07/bds-echo-seeker-07-15.pagehttps://www.boeing.com/features/2015/07/bds-echo-seeker-07-15.page
Brady T, Konkle T, Alvarez G. 2011. A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5): 4, 1–34
Chen J, Sun J, Wang G. 2021. From Unmanned Systems to Autonomous Intelligent Systems. Engineering. [DOI:10.1016/j.eng.2021.10.007http://dx.doi.org/10.1016/j.eng.2021.10.007]
Cohen G. 2000. Hierarchical models in cognition: Do they have psychological reality? European Journal of Cognitive Psychology; 12(1):1–36 [DOI: 10.1080/095414400382181http://dx.doi.org/10.1080/095414400382181\]
DARPA Subterranean (SubT) Challenge[N/OL]. [2023-2-1] https://www.darpa.mil/program/darpa-subterranean-challengehttps://www.darpa.mil/program/darpa-subterranean-challenge
Ferbinteanu J. 2019. Memory systems 2018 – Towards a new paradigm, Neurobiology of Learning and Memory, 157: 61-78
Franklin S, Kugele S. 2021. Learning in LIDA. Cognitive Systems Research, November 66(4): 176-200
Gao J. 2017. The 60 Anniversary and Prospect of Acta Geodaetica et Cartographica Sinica. Acta Geodaetica et Cartographica Sinica, 46(10): 1219-1225
高俊. 2017. 图到用时方恨少,重绘河山待后生——《测 绘 学 报》60年纪念与前瞻.测绘学报, 46(10): 1219-1225 [DOI:10.11947/j.AGCS.2017.20170503http://dx.doi.org/10.11947/j.AGCS.2017.20170503.]
Gobet F, Lane P C, Croker S, Cheng P C, Jones G, Oliver I, Julian M P. 2001. Chunking mechanisms in human learning. Trends in cognitive sciences; 5(6):236–243 [DOI: 10.1016/S1364-6613(00)01662-4PMID: 11390294http://dx.doi.org/10.1016/S1364-6613(00)01662-4PMID:11390294]
Greenauer N, Waller D. 2010. Micro-and macroreference frames: Specifying the relations between spatial categories in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition; 36(4):938-957
Hafting T, Fyhn M, Molden S, Moser M-B, Moser E I. 2005. Micro-structure of a Spatial Map in the Entorhinal Cortex.Nature, 436:801-806
Hirtle S C, Jonides J. 1985. Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3):208– 217 [DOI: 10.3758/BF03197683http://dx.doi.org/10.3758/BF03197683]
Hu S C, Chen L, Wu P H, Li H Y, Yan J C, Tao D C. ST-P3: end-to-end vision-based autonomous driving via spatial-temporal feature learning. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 533-549
Keinath A T. 2016. The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex are Periodically Organized. PlosOne, 11(3): e0152041.
Kim M, Maguire E A. 2018. Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 3D Space in a Hierarchical Manner. Cereb Cortex, 28(5): 1898-1909 [DOI: 10.1093/cercor /bhy054http://dx.doi.org/10.1093/cercor/bhy054.]
Kotseruba I, Tsotsos J K. 2020. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, 53:17–94
Lehman J F, Laird J, Rosenbloom P. 2006. A Gentle Introduction to Soar, an Architecture for Human Cognition[EB/OL]. https://www.academia.edu/29539874/A_Gentle_Introduction_to_Soar_an_Architecture _for_Human_Cognition_2006_Updatehttps://www.academia.edu/29539874/A_Gentle_Introduction_to_Soar_an_Architecture_for_Human_Cognition_2006_Update
Li D R, Xu X D, Shao Z F. 2022. On geospatial information science in the era of IoE. Acta Geodaetica et Cartographica Sinica, 51(1):1-8.
李德仁, 徐小迪, 邵振峰. 2022. 论万物互联时代的地球空间信息学.测绘学报, 51(1):1-8 [DOI:10.11947/j.AGCS.2022. 20210564http://dx.doi.org/10.11947/j.AGCS.2022.20210564]
Lin H, Zhang C X , Chen M, Zheng X Q. 2016. On virtual geographic environments for geographic knowledge representation and sharing. Journal of Remote Sensing, 20(5): 1290-1299
林珲, 张春晓, 陈旻, 郑新奇. 论虚拟地理环境对地理知识的表达与共享. 遥感学报, 20(5): 1290-1299
Lu Z Y, Du J Z. 2005. Psychology of memory. Beijing: People's Education Press.
鲁忠义,杜建政. 2005. 记忆心理学. 北京:人民教育出版社
Lynch K. 1960. The Image of the City. MIT Press, Cambridge, MA
Madl T, Franklin S, Chen K, Montaldi D, Trappl R. 2016. Towards real-world capable spatial memory in the LIDA cognitive architecture. Biologically Inspired Cognitive Architectures, http://dx.doi.org/10.1016/j. bica.2016.02.001http://dx.doi.org/10.1016/j.bica.2016.02.001
Madl T, Franklin S, Chen K, Montaldi D, Trappl R. 2016. Exploring the Structure of Spatial Representations. PLoS ONE 11(6): e0157343 [DOI:10.1371/journal.pone.015734http://dx.doi.org/10.1371/journal.pone.015734]
Madl T, Franklin S, Chen K, Trappl R. 2013. Spatial Working Memory in the LIDA Cognitive Architecture. The 12th International Conference on Cognitive Modelling. Ottawa, Canada
McNamara T P, Hardy J K, Hirtle S C. 1989. Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition; 15(2):211. PMID: 2522511
McNamara T P. 1986. Mental representations of spatial relations. Cognitive psychology; 18(1):87–121 [DOI: 10.1016/0010-0285(86)90016-2 PMID: 3948491http://dx.doi.org/10.1016/0010-0285(86)90016-2PMID:3948491]
Meilinger T, Riecke B E, Bülthoff H H. 2014. Local and global reference frames for environmental spaces. The Quarterly Journal of Experimental Psychology; 67(3):542–569 [DOI: 10.1080/17470218.2013. 821145 PMID: 23972144http://dx.doi.org/10.1080/17470218.2013.821145PMID:23972144]
Miller G A. 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63: 81–97
Moser E I, Moser M B. 2013. Grid cells and neural coding in high-end cortices. Neuron, 80:765-774
Nadel L. 2020. What Is a Memory That It Can Be Changed?. In Richard D. Lane, Lynn Nadel (eds.) Neuroscience of Enduring Change. Oxford University Press
O’Keefe J, Dostrovsky J. 1971. The Hippocampus as a Spatial Map.Preliminary Evidence from Unit Activity in the Freely-Moving Rat. Brain Research, 34(1):171-175
O’Reilly, R C. 1998. Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences, 2: 455–462
O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map. Oxford University Press
Peng D L. 2019. General psychology(5th edition). Beijing: Beijing Normal University Press
彭聃龄. 2019. 普通心理学(第5版).北京:北京师范大学出版社
Schultheis H, Barkowsky T. 2011. Casimir: An Architecture for Mental Spatial Knowledge Processing. Topics in Cognitive Science, 3: 778–795
Sun R. 2007. The importance of cognitive architectures: an analysis based on clarion. Journal of Experimental & Theoretical Artificial Intelligence, 19(2):159–193
Sun R. 2012. Memory systems within a cognitive architecture. New Ideas in Psychology. 30: 227–240
Tolman E C. 1948. Cognitive Maps in Rats and Man. Psychological Review, 55(4):189-208
Trafton J G., Hiatt L, Harrison A, Tamborello F, Khemlani S, Schultz A. 2013. ACT-R/E: An embodied cognitive architecture for human-robot interaction. Journal of Human-Robot Interaction, 2(1): 30–55
Tversky B. 1993. Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank and I. Campari (Eds.), Spatial information theory: Theoretical basis for GIS. Berlin: Springer. LNCS 716:14–24
Uttal D, Friedman A, Hand L, Warren C. 2010. Learning fine-grained and category information in navigable real-world space. Memory and Cognition, 38, 1026–1040 [DOI: 10.3758/MC.38.8.1026 7http://dx.doi.org/10.3758/MC.38.8.10267, 34]
Webb B. 2001. Can robots make good models of biological behaviour? Behavioral and Brain Sciences, 24: 1033–1050
Whittington J C R, McCaffary D, Bakermans J J W, Behrens T E J. 2022. How to build a cognitive map. September Nature Neuroscience, 25(10):1-16
Wintermute S. 2009. An Overview of Spatial Processing in Soar/SVS. Center for Cognitive Architecture University of Michigan 2260 Hayward St Ann Arbor, Michigan 48109-2121 CCA-TR-2009-01
Yin P, Abulikemu A, Zhao S Q, Liu C L, Sebastian S. BioSLAM: A Bio-inspired Lifelong Memory System for General Place Recognition. IEEE Transactions on Robotics (T-Ro). Preprint Version. 2022
You X, Jia F L, Tian J P, Yang J, Li K. 2023. The Machine Map and its Conceptual Model. Journal of Geo-information Science. https://kns.cnki.net/kcms/detail/ 11.5809.p. 20230308.1038.002.htmlhttps://kns.cnki.net/kcms/detail/11.5809.p.20230308.1038.002.html
游雄, 贾奋励, 田江鹏, 杨剑, 李科. 2023. 机器地图及其概念模型.地理信息科学学报, https://kns.cnki.net/kcms/detail/ 11.5809..20230308.1038.002.htmlhttps://kns.cnki.net/kcms/detail/11.5809..20230308.1038.002.html
相关文章
相关作者
相关机构