Models and Methods | Views : 0 下载量: 472 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Integrating ensemble prediction constraints and error prediction entropy maximization for MLS point cloud classification

    • In the field of mobile laser scanning point cloud classification, researchers have proposed a new deep learning method that enhances point cloud feature expression and improves model generalization ability by integrating prediction constraints and maximizing error prediction entropy. This method has been validated for its effectiveness on multiple publicly available datasets.
    • Vol. 29, Issue 1, Pages: 328-339(2025)   

      Published: 07 January 2025

    • DOI: 10.11834/jrs.20233174     

    移动端阅览

  • LEI XIANGDA, GUAN HAIYAN, DONG ZHEN. Integrating ensemble prediction constraints and error prediction entropy maximization for MLS point cloud classification. [J]. National remote sensing bulletin, 2025, 29(1): 328-339. DOI: 10.11834/jrs.20233174.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Dong Zhen 武汉大学 测绘遥感信息工程国家重点实验室
SHAO Pan 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
GAO Ziang 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
FANG Tingting 中国科学技术大学 网络空间安全学院;中国科学院电磁空间信息重点实验室
LIU Bin 中国科学技术大学 网络空间安全学院;中国科学院电磁空间信息重点实验室
CHEN Chunhui 安徽省基础测绘信息中心;自然资源部江淮耕地资源保护与生态修复重点实验室
LI Xiangyun 安徽省基础测绘信息中心;自然资源部江淮耕地资源保护与生态修复重点实验室
ZHANG Zhihao 同济大学 测绘与地理信息学院

相关机构

Hubei Key Laboratory of Intelligent Vision Monitoring for Hydroelectric Engineering, China Three Gorges University
College of Computer and Information Technology, China Three Gores University
School of Cyber Science and Technology, University of Science and Technology of China
Key Laboratory of Electromagnetic Space Information, Chinese Academy of Science
Anhui Provincial Geomatic Center
0