Research on Ground Subsidence Prediction Model in Xinmi City based on TSC-LSTM
- Pages: 1-12(2024)
Published Online: 02 April 2024
DOI: 10.11834/jrs.20243530
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 02 April 2024 ,
扫 描 看 全 文
赵贺文,陈涛.XXXX.基于TSC-LSTM的新密市地面沉降预测模型研究.遥感学报,XX(XX): 1-12
Zhao hewen,Chen tao. XXXX. Research on Ground Subsidence Prediction Model in Xinmi City based on TSC-LSTM. National Remote Sensing Bulletin, XX(XX):1-12
地面沉降预测对于城市地面沉降模式的深入分析和早期预警具有重要的指导意义。传统的数值预测模型在捕捉地面沉降数据复杂特征方面存在一定困难,导致预测结果的准确性不高。为了解决这一问题,本研究基于SBAS-InSAR方法获取的新密市地面沉降信息,构建了结合趋势和季节特征长短时记忆网络的地面沉降预测模型(TSC-LSTM,Trend Seasonal Characteristics-LSTM),该模型联合基于加权回归季节趋势分解(STL)在沉降数据时序特征提取方面的优越性和长短期记忆模型(LSTM)在时序预测方面对梯度消失问题的处理优势,实现对地面沉降数据更准确的预测。结果表明:(1)新密市2018年到2022年的地面沉降速率为-60.3 ~ 51.96 mm/a,共形成五个地面沉降中心区域。其中,最大累计沉降和最大累积隆起分别为304.9 mm和197.68 mm。(2)TSC-LSTM模型在五个沉降中心区域的预测中表现出色,TSC-LSTM模型的R²值范围为0.9985 ~ 0.9992,明显高于次优模型LSTM的0.9662 ~ 0.9872。TSC-LSTM模型预测精度的RMSE值小于2 mm,达到了1.2426 ~ 1.7403 mm。(3)单点预测结果表明,TSC-LSTM模型能够更精确的把握累积沉降数据中的局部变化趋势。本研究提出的方法能为城市地面沉降的深入研究提供有力支持。
Predicting land subsidence is crucial for conducting in-depth analyses and providing early warnings about urban land subsidence patterns. However
traditional numerical prediction models often struggle to accurately capture the intricate characteristics of land subsidence data
leading to less precise predictions. This study focuses on Xinmi City and endeavors to improve the accuracy of land subsidence prediction by combining time series feature extraction methods with time series prediction techniques.In this study
232 interference images provided by HyP3 were utilized to acquire land subsidence information in Xinmi City spanning from January 2018 to December 2022
employing SBAS-InSAR technology. Recognizing the challenge of achieving high accuracy in directly predicting land subsidence data
this study developed a land subsidence prediction model that integrates trend and seasonal characteristics using Long Short-Term Memory networks (TSC-LSTM
Trend Seasonal Characteristics-LSTM). The TSC-LSTM model capitalizes on the strengths of weighted regression seasonal trend decomposition (STL) for extracting time series features from settlement data and the long short-term memory model (LSTM) for addressing the vanishing gradient problem in time series prediction. This fusion of techniques allows for a more precise analysis of land subsidence data and enables highly accurate predictions. Distinguishing itself from the conventional LSTM model
the TSC-LSTM model refrains from directly inputting ground subsidence data. Instead
it employs STL to meticulously extract both trend and seasonal characteristics from the land subsidence data. This approach maximizes the utilization of characteristic information inherent in the land subsidence data. Subsequently
these features are fed into the LSTM model for prediction. This unique methodology reduces noise interference and significantly enhances the accuracy of model predictions.This research leverages time-series InSAR data from 2018 to 2022 for Xinmi City
employing the TSC-LSTM model
deep learning architectures (RNN and LSTM)
and conventional machine learning algorithms (MLP and SVR) to forecast the cumulative subsidence data for five subsidence centers using SBAS-InSAR. It identifies the two most optimal models and validates their efficacy in single-point prediction scenarios
utilizing domain-specific terminology. Research findings indicate the following:(1) Between 2018 and 2022
Xinmi City experienced a land subsidence rate ranging from -60.3 to 51.96 mm per annum
resulting in the identification of five distinct land subsidence center areas. Among these
the highest cumulative settlement and uplift reached 304.9 mm and 197.68 mm
respectively. The universality of the TSC-LSTM model across diverse datasets has been corroborated
demonstrating its high precision
exceptional generalization capability
and stable high performance in the prediction of land subsidence
employing specialized terminology. (2) The TSC-LSTM model exhibited exceptional performance in predicting the five subsidence center areas. The R² values for the TSC-LSTM model range from 0.9985 to 0.9992
significantly surpassing the second-best model
LSTM
which has an R² range of 0.9662 to 0.9872. Moreover
the RMSE values for the prediction accuracy of the TSC-LSTM model were less than 2 mm
achieving a range of 1.2426 to 1.7403 mm. (3) Single-point prediction results demonstrate the TSC-LSTM model's superior ability to accurately capture local changes in the cumulative settlement data. The TSC-LSTM model proposed in this study outperforms the traditional LSTM model in terms of prediction accuracy and model stability
thereby providing robust support for in-depth research on urban land subsidence.
地面沉降预测TSC-LSTM模型SBAS-InSAR累积沉降数据分解新密市LSTM
Ground settlement predictionTSC-LSTMSBAS-InSARCumulative settlement data decompositionXinmi CityLSTM
Apaydin H, Mohammad, Kambiz F, and Ramendra P. 2021. Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. Journal of Hydrology, 600:126506. [DOI: 10.1016/j.jhydrol.2021.126506http://dx.doi.org/10.1016/j.jhydrol.2021.126506]
Bai L, Jiang L, Wang H and Sun Q, 2016. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over Wuhan in Central China revealed by TerraSAR-X InSAR analysis. Remote Sensing, 8 (4): 350. [DOI: 10.3390/rs8040350http://dx.doi.org/10.3390/rs8040350]
Berardino P, Fornaro G, Lanari R and Sansosti E, 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transaction on Geoscience and Remote Sensing, 40(11): 2375-2383. [DOI: 10.1109/TGRS.2002.803792http://dx.doi.org/10.1109/TGRS.2002.803792]
Cao J, Li Z, and Li J. 2019. Financial Time Series Forecasting Model Based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519: 127-139. [DOI: 10.1016/j.physa.2018.11.061http://dx.doi.org/10.1016/j.physa.2018.11.061]
Cao X Y,Zhu L and Gong L Het al. 2022. Ground subsidence simulation in eastern Beijing plains by AM-LSTM network. Journal of Remote Sensing, 26(7):1302-1314.
曹鑫宇, 朱琳, 宫辉力, 等. 2022. AM-LSTM网络的北京平原东部地面沉降模拟.遥感学报, 26(7): 1302-1314. [DOI: 10.11834/jrs.20211297http://dx.doi.org/10.11834/jrs.20211297]
Chen Y, He Y and Zhang L Yet al.2022. Prediction of surface deformation by long and short-term memory network TS-InSAR. Journal of Remote Sensing, 26(7): 1326-1341.
陈毅, 何毅, 张立峰, 等. 长短时记忆网络TS-InSAR地表形变预测.遥感学报, 2022, 26(7): 1326-1341 [DOI: 10.11834/jrs.20221457http://dx.doi.org/10.11834/jrs.20221457]
Cheng S, Sui B B, Shen Y and Wang T. 2015. Prediction of mining ground settlement based on BP neural network. Geomatics and Spatial Information Technology, 38(3): 18-20.
成枢, 隋冰冰, 沈毅, 王涛. 2015. 基于BP神经网络的矿区地表沉降预测研究. 测绘与空间地理信息, 38(3): 18-20. [DOI: 10.3969/j.issn.1672-5867.2015.03.007http://dx.doi.org/10.3969/j.issn.1672-5867.2015.03.007]
Chunget al. 2014.Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.CoRR, abs/1412.3555[DOI: 10.48550/arXiv.1412.3555http://dx.doi.org/10.48550/arXiv.1412.3555]
Chen Y Y, Zhao B K, Wang Het al.2023. Prediction of Time-series InSAR Surface Deformation Based on LSTM Model. Yangtze River, 1-8.
陈媛媛,赵秉琨,王慧等.2023.基于LSTM模型的时序InSAR地表形变预测.人民长江,1-8.
Cheng S, Sui B B, Shen Y and Wang T. 2015. Prediction of mining ground settlement based on BP neural network. Geomatics and Spatial Information Technology, 38(3): 18-20.
Cigna F and Tapete D. 2022. Urban growth and land subsidence: multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of the Total Environment, 811: 152211. [DOI: 10.1016/j.scitotenv.2021.152211http://dx.doi.org/10.1016/j.scitotenv.2021.152211]
Ding Q, Shao Z F Huang X, Altan O, Zhuang Q W and Hu B. 2021. Monitoring, analyzing and predicting urban surface subsidence: A case study of Wuhan City, China. International Journal of Applied Earth Observation and Geoinformation, 102: 102422. [DOI: 10.1016/j.jag.2021.102422http://dx.doi.org/10.1016/j.jag.2021.102422]
Ding S, Zhang H H, Tao Z, and Li R J. 2022.Integrating data decomposition and machine learning methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert Systems with Applications. 204: 117635. [DOI: 10.1016/j.eswa.2022.117635http://dx.doi.org/10.1016/j.eswa.2022.117635]
Ferretti A, Prati C and Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. [DOI: 10.1109/36.868878http://dx.doi.org/10.1109/36.868878]
Guo C N, Wang X R, Wang X S and Lian J X.2023. Research on ground settlement prediction method based on ARIMA-GRU model. Urban Geology, 18(02):138-143.
郭聪楠, 王鑫茹, 王小松, 练建鑫. 2023. 基于ARIMA-GRU模型的地面沉降预测方法研究. 城市地质, 18(02): 138-143. [DOI:10.3969/j.issn.1007-1903.2023.02.003http://dx.doi.org/10.3969/j.issn.1007-1903.2023.02.003]
Goorabi A., Karimi M, Yamani M and Perissin D. 2020. Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by sentinel-1A InSAR observations. Arid Environment. 181: 104238. [DOI: 10.1016/j.jaridenv.2020.104238http://dx.doi.org/10.1016/j.jaridenv.2020.104238]
Hossein A and Paki R. 2022. Improving Time Series Forecasting Using LSTM and Attention Models. Journal of Ambient Intelligence and Humanized Computing, 13(1): 673-691. [Doi:10.1007/s12652-020-02761-xhttp://dx.doi.org/10.1007/s12652-020-02761-x]
Hochreiter S and Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735-1780. [DOI: 10.1162/neco.1997.9.8.1735http://dx.doi.org/10.1162/neco.1997.9.8.1735]
Hogenson K and Kristenson Het al. 2020. Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data. Computer software. [DOI: 10.5281/zenodo.4646138http://dx.doi.org/10.5281/zenodo.4646138]
Jia S M, Tian F and Qi G. 2019. Urban “chronic disease”: the origin and comprehensive control countermeasures of land subsidence. City and Disaster Reduction, (3): 22-27.
贾三满, 田芳, 齐干. 2019. 城市“慢性病”——地面沉降成因及综合防控对策. 城市与减灾, (3): 22-27. [DOI: 10.3969/j.issn.1671-0495.2019.03.007http://dx.doi.org/10.3969/j.issn.1671-0495.2019.03.007]
Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M and Pepe A. 2007. An overview of the small BAseline subset algorithm: a DInSAR technique for surface deformation analysis. Pure and Applied Geophysics, 164(4): 637-661. [DOI: 10.1007/s00024-007-0192-9http://dx.doi.org/10.1007/s00024-007-0192-9]
Li G Y, Zhang R, Liu G Xet al.2018. Sentinel-1A TS-DInSAR Subsidence Monitoring and Analysis in the Beijing-Tianjin-Hebei Region. Journal of Remote Sensing, 22(4):633-646.
李广宇,张瑞,刘国祥,等. Sentinel-1A TS-DInSAR京津冀地区沉降监测与分析.遥感学报, 22(4):633-646. [DOI:10.11834/jrs.20187196http://dx.doi.org/10.11834/jrs.20187196]
Li M, X Zhang, Z Bai, H Xie and B Chen.2022. Land Subsidence in Qingdao, China, from 2017 to 2020 Based on PS-InSAR. International Journal of Environmental Research and Public Health, 19(8): 4913. [DOI: 10.3390/ijerph19084913http://dx.doi.org/10.3390/ijerph19084913]
Li Y ,Bao T ,Gong Jet al.2020.The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network. IEEE Access,2020,894440-94452.[DOI: 10.1109/ACCESS.2020.2995592http://dx.doi.org/10.1109/ACCESS.2020.2995592]
Liu C Z and Huang S,2022. Research on the Causes of the "7·20" Flash Flood Geological Disaster in the Western Mountainous Area of Zhengzhou. Journal of Engineering Geology, 30(03):931-943
刘传正,黄帅.2022.郑州西部山区“7·20”山洪地质灾害成因研究.工程地质学报, 30(03):931-943.[DOI:10.13544/j.cnki.jeg.2022-0093http://dx.doi.org/10.13544/j.cnki.jeg.2022-0093]
Liu Q H, Liu H M, Zhang Y Het al.2022. Spatio-temporal prediction of large-scale ground subsidence considering spatial heterogeneity. Journal of Remote Sensing, 26(7):1315-1325.
刘青豪,刘慧敏,张永红,等. 2022.顾及空间异质性的大范围地面沉降时空预测. 遥感学报, 26(7):1315-1325. [DOI:10.11834/jrs.20211445http://dx.doi.org/10.11834/jrs.20211445]
Liu Q H, Zhang Y H, Deng M, Wu H A, Kang Y H and Wei J J. 2021. A Deep Learning Prediction Method for Large-Scale Surface Settlement Time Series. Acta Geodaetica et Cartographica Sinica, 50(03): 396-404.
刘青豪, 张永红, 邓敏, 吴宏安, 康永辉, 魏钜杰. 2021. 大范围地表沉降时序深度学习预测法. 测绘学报, 50(03): 396-404.
Lyu C Z and An D D. 2021. Application of grey prediction model on land subsidence. Geomatics and Spatial Information Technology, 44(3): 73-75.
吕传振, 安动动. 2021. 灰色预测模型在地面沉降中的应用. 测绘与空间地理信息, 44(3): 73-75. [DOI: 10.3969/j.issn.1672-5867.2021.03.019http://dx.doi.org/10.3969/j.issn.1672-5867.2021.03.019]
Peng H J, Zhou Y, Hu X Fet al.2023. PM2.5 Concentration Prediction Model Based on Deep Learning and Random Forest. Journal of Remote Sensing, 27(2):430-440.
彭豪杰,周杨,胡校飞,等. 2022.基于深度学习与随机森林的PM2.5浓度预测模型. 遥感学报, 27(2):430-440. [DOI:10.11834/jrs.20210504http://dx.doi.org/10.11834/jrs.20210504]
Sabrian P.G, Saepuloh A, Kashiwaya K and Koike K, 2021. Combined SBAS-InSAR and geostatistics to detect topographic change and fluid paths in geothermal areas. Journal of Volcanology and Geothermal Research, 416: 107272. [DOI: 10.1016/j.jvolgeores.2021.107272http://dx.doi.org/10.1016/j.jvolgeores.2021.107272]
Sun X P, Lu X Y and Wen X Het al.2016. Ground Subsidence Monitoring in Chengdu Plain Based on SBAS-InSAR. Remote sensing for land and resources, 28(03):123-129.
孙晓鹏, 鲁小丫, 文学虎, 等. 2016, 基于SBAS-InSAR的成都平原地面沉降监测.国土资源遥感, 28(03): 123-129. [DOI: 10.6046/gtzyyg.2016.03.20http://dx.doi.org/10.6046/gtzyyg.2016.03.20]
Vagale A, Šteina L and Vēciņš V. 2021. Time Series Forecasting of Mobile Robot Motion Sensors Using LSTM Networks. Applied Computer Systems, 26(2): 150-157. [DOI:10.2478/acss-2021-0018http://dx.doi.org/10.2478/acss-2021-0018]
Xiong J C, Nie Q J and Luo Yet al. 2019. Monitoring Urban Ground Subsidence Using Dual-Polarisation Sentinel-1 Data - A Case Study of Shanghai Municipality. Bulletin of Survey and Mapping, (11): 98-102+129.
熊佳诚, 聂运菊, 罗跃, 等. 2019.利用双极化Sentinel-1数据监测城市地面沉降——以上海市为例. 测绘通报, (11): 98-102+129. [DOI: 10.13474/j.cnki.11-2246.2019.0360http://dx.doi.org/10.13474/j.cnki.11-2246.2019.0360]
Xu L, Ou Y X, Cai J J, Wang J, Fu Y and Bian X Y. 2023. “Offshore Wind Speed Assessment with Statistical and Attention-Based Neural Network Methods Based on STL Decomposition.” Renewable Energy, 216: 119097. [DOI: 10.1016/j.renene.2023.119097http://dx.doi.org/10.1016/j.renene.2023.119097]
Yan X X, Yang T L, Xu Y, Tosi L G, Stouthamer E, Andreas H, Minderhoud Pet al. 2020. Advances and Practices on the Research, Prevention and Control of Land Subsidence in Coastal Cities. Acta Geologica Sinica - English Edition, 94(1): 162-175. [DOI: 10.1111/1755-6724.14403http://dx.doi.org/10.1111/1755-6724.14403]
Ye Y C, Yan C D, Luo X X, Zhang R F and Yuan G J. 2022. Time-Series InSAR Ground Settlement Analysis along Zhengzhou Metro. Journal of Remote Sensing, 26(07): 1342-1353.
叶勇超, 闫超德, 罗先学, 张瑞峰, 袁观杰. 2022. 时序InSAR郑州地铁沿线地面沉降分析. 遥感学报, 26(07): 1342-1353.
Yin H L and Jin Det al. 2020. STL-ATTLSTM: Vegetable Price Forecasting Using STL and Attention Mechanism-Based LSTM. Agriculture, 10 (12): 612. [DOI:10.3390/agriculture10120612http://dx.doi.org/10.3390/agriculture10120612]
Yue Z H, Shen T, Mao X and Ma W J. 2020. Study on prediction method of land subsidence based on recurrent neural network. Science of Surveying and Mapping, 45(12): 145-152.
岳振华, 沈涛, 毛曦, 马维军. 2020. 循环神经网络的地面沉降预测方法. 测绘科学, 45(12): 145-152. [DOI: 10.16251/j.cnki.1009-2307.2020.12.022http://dx.doi.org/10.16251/j.cnki.1009-2307.2020.12.022]
Yu W, Gong H L, Chen B Bet al. 2022. Temporal and Spatial Evolution Characteristics and Prediction of Ground Subsidence in the Plain Area of Eastern Beijing. Remote Sensing for Natural Resources, 34(04): 183-193.
于文,宫辉力,陈蓓蓓等. 2022. 北京东部平原区地面沉降时空演化特征及预测.自然资源遥感, 34(04):183-193.[DOI: 10. 6046/zrzyyg.2021390http://dx.doi.org/10.6046/zrzyyg.2021390]
Zhang Y J, Heresh F, and Falk A. 2019. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Computers & Geosciences, 133: 104331. [DOI: 10.1016/j.cageo.2019.104331http://dx.doi.org/10.1016/j.cageo.2019.104331]
Zhang R, Zhang W, Huang W, Ma T, Wang Q, Fang K and Wang K. 2023. Highprecision monitoring method for airport deformation based on time-series InSAR technology. Constr. Build. Mater, 366: 130144. [DOI: 10.1016/j. conbuildmat.2022.130144http://dx.doi.org/10.1016/j.conbuildmat.2022.130144]
Zhang T F, Xing X M, Peng Wet al.2022. Time-series InSAR deformation prediction in mining areas based on Coordinate-Time Function (CT-PIM) — A case study of Huai'an Salt Mine. Journal of Remote Sensing, 1-16.
张腾飞,邢学敏,彭葳,等. 2022.基于坐标-时间函数(CT-PIM)的矿区时序InSAR形变预计—以淮安盐矿为例. 遥感学报, 1-16. [DOI:10.11834/jrs.20222172http://dx.doi.org/10.11834/jrs.20222172]
Zhang Y M, Wang P, Luo X, Zhang Q and Chen H. 2017. Monitoring surface subsidence in Xi'an using Sentinel-1 data and SBAS-InSAR technology. Bulletin of Survey and Mapping, (04): 93-97.
张艳梅, 王萍, 罗想, 张荞, 陈慧. 2017. 利用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降. 测绘通报, (04): 93-97. [DOI: 10.13474/j.cnki.11-2246.2017.0128http://dx.doi.org/10.13474/j.cnki.11-2246.2017.0128]
Zhao F C, Miao F S, Wu Y P, Xiong Y, Gong S Q, and Sun D K. 2024. Land subsidence susceptibility mapping in urban settlements using time-series PS-InSAR and random forest model. Gondwana Research, 125: 406-424. [DOI: 10.1016/j.gr.2023.09.019http://dx.doi.org/10.1016/j.gr.2023.09.019]
Zheng X X, Wu Q, Hou Y S and Ying Y F. 2022. A few cutting-edge issues on the study of urban ground settlement. Acta Geoscientica Sinica, 23(3): 279-282.
郑铣鑫, 武强, 侯艳声, 应玉飞. 2002. 关于城市地面沉降研究的几个前沿问题. 地球学报, 23(3): 279-282. [DOI: 10.3321/j.issn:1006-3021.2002.03.017http://dx.doi.org/10.3321/j.issn:1006-3021.2002.03.017]
Zhou D Y, Zuo X Q and Zhao Z Fet al. 2023. Urban ground settlement prediction based on SBAS-InSAR and improved BP neural network. Geological Bulletin of China, 38(3): 18-20.
周定义, 左小清, 赵志芳, 等. 2023. 基于SBAS-InSAR和改进BP神经网络的城市地面沉降预测. 地质通报, 42(10): 1774-1783. [DOI:10.12097/j.issn.1671-2552.2023.10.013http://dx.doi.org/10.12097/j.issn.1671-2552.2023.10.013]
Zhou W, Chen F and Guo H. 2015. Differential radar interferometry for structural and ground deformation monitoring: a new tool for the conservation and sustainability of cultural heritage sites. Sustainability, 7(2), 1712–1729. [DOI: 10.3390/ su7021712http://dx.doi.org/10.3390/su7021712]
Zhu X G and Li G E. 2021, Monitoring urban ground settlement using multi-sensor SAR datasets. Bulletin of Survey and Mapping, (06): 71-75.
祝昕刚, 李更尔. 2021. 利用多传感器SAR数据集监测城市地面沉降. 测绘通报, (06): 71-75.[DOI: 10.13474/j.cnki.11-2246.2021.0179http://dx.doi.org/10.13474/j.cnki.11-2246.2021.0179]
Zhu J J, Li Z W and Hu J. 2017. InSAR Deformation Monitoring Methods and Research Progress. Acta Geodaetica et Cartographica Sinica, 46(10): 1717–1733.
朱建军, 李志伟,胡俊. 2017. InSAR变形监测方法与研究进展. 测绘学报, 46(10): 1717–1733. [DOI: 10.11947/j.AGCS.2017.20170350http://dx.doi.org/10.11947/j.AGCS.2017.20170350]
相关文章
相关作者
相关机构